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Introduction

Our goal is to study the logics that accommodate rejected
propositions along with asserted propositions. We will call such
logics uni�ed. And we abolish the regular implicit assumption

that every proposition which is not asserted is rejected.

Thus, we need to answer the following questions:

(a) What do we prove?
(b) How do we prove it?

The brief answers are

(a) We prove statements asserting or rejecting a given proposition;
(b) We use the multiple-conclusion rules which premises and
conclusions are �nite sets of statements.
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Introduction

It is due  Lukasiewiecz that rejection was explicit including to logic.
In the introduction to his paper1 , he wrote:

�The concepts of �truth�, �falsehood�, and �assertion� I owe to

Frege. In adding �rejection� to �assertion� I have followed

Brentano.�

According to Brentano and in contrast to Frege, assertion (or
acceptance) and rejection (or refutation, or denial) should have the
same status. Let us note that assertion of a negation is much
stronger than the rejection. For instance, in the Classical Logic we
reject formula p (in symbols ⊣ p), but the assertion ⊢ ¬p does not
hold.

1J.  Lukasiewicz �Two-valued logic�, 1921
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Introduction

 Lukasiewicz suggested to endow regular calculus (with rule of
substitution) de�ning the Classical Logic (CPC), with the
anti-axiom ⊣ p and the following two rules:

modus tolens: ⊢ (A→ B),⊣ B/ ⊣ A (MT)
reversed substitution: ⊣ σ(A)/ ⊣ A (Rs)

Independently, Carnap suggested to include rejections into
deductive systems: �The rules of deduction usually consist of
primitive sentences and rules of inference (de�ning 'directly
de�nable in K'). Sometimes, K contains also rules of refutation
(de�ning 'directly refutable in K').�2 Moreover, Carnap also used
the multiple-conclusion rules.

2R. Carnap Introduction to Semantics, Paragraph 24.
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Introduction

Carnap's motivation to introducing refutations and
multiple-conclusion rules was requirement of categoricity: if we
want to syntactically characterize two-valued classical semantics,
this syntactical system should be valid only (up to matrix
isomorphisms) on the two-element Boolean matrix. But any axiom
and the rule which is valid in (2,{1}), is valid in all matrices
(2n,{1}),n ≥ 0 as well.
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Introduction

Carnap's solution is to use refutations and multiple-conclusion
(multiple-alternative) rules � the ordered pairs Γ/∆ of �nite sets of
formulas.
In semantics, a rule Γ/∆ is valid in matrix (A,D) if for any
valuation ν,

ν(Γ) ⊆ D entails ν(∆) ∩D ≠ ∅.

A rejected (refuted) proposition ⊣ A is valid in a given matrix, if for
some valuation, the value of A is not designated. For instance, ⊣ p,
where p is a variable, is valid in any matrix having at least one
non-designated element, and ⊣ p is invalid in all matrices in which
every element is designated.
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Introduction

Our goal is not to limit the class of matrix. We follow the
Brentano- Lukasiewicz path.

Before we proceed, the warning:

We do not consider multiple-conclusion logics in the sense of
Shoesmith and Smiley or Carnap's junctives.

We use multiple-conclusion rules merely as means of derivation of a
statement from a set of statements.
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Uni�ed Logic

We assume that Frm is a set of propositional formulas built in a
regular way from a countable set Var of propositional variables and
a �nite set of connectives Ω.

De�nition

A uni�ed logic is an ordered pair (L+,L−), where L+ is a set of
formulas closed under the rule of substitution: Sb ∶= A/σ(A), where
A ∈ Frm and σ is a substitution, while L− is a set of formulas closed
under the rule of reverse substitution: Rs ∶= σ(A)/A.

For example, let Cl+ be a set of all classical tautologies and
Cl− ∶= Frm ∖ Cl+. Then the pair UCL ∶= (Cl+,Cl−) is a uni�ed
classical logic.
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Uni�ed Logic

L+ is a set of asserted (accepted) propositions � theorems ; L− is a
set of rejected (refuted, denied) propositions � anti-theorems ;

We make no assumptions regarding relations between L+ and L−.
All possibilities are admissible:

L+ - asserted propositions
L− - rejected propositions
L∧ - asserted and rejected
propositions
L○ - neither asserted nor rejected
propositions
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Introduction: Types of uni�ed logics

If L+ ∩ L− = ∅, the logic is coherent.

If L+ ∪ L− = Frm, the logic is full.

A full and coherent logic is called standard.

Example. Let us take the three-element Heyting algebra
A ∶= ({0, a,1};→,∧,∨,¬), and consider a (logical) matrix
M ∶= (A; D+ = {1},D− = {0}). For any proposition A, we let

A ∈ L+ ⇐⇒ for each valuation ν, ν(A) ∈ D+;
A ∈ L− ⇐⇒ there is a valuation ν, such that ν(A) ∈ D−.

Then, A ∈ L+ if and only if A is valid in the Smetanich logic. A ∈ L−

if and only is A is invalid in the Classical logic. Propositions p ∨ ¬p
and ¬¬p → p are neither asserted, not rejected.
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Uni�ed Logic

It is custom to de�ne logic by a consequence relation. If assertions
and rejections have the same status, we need to consider the
consequence relations on sets of meta-statements of the type �A is
asserted� (A ∈ L+) and �A is rejected� (A ∈ L−).

It is inconvenient for our purposes to use ⊢ and ⊣ for �is asserted�
and �is rejected�, because the notation like

⊢ A1, . . . ,⊢ An ⊢ ⊢ B

looks confusing. Instead, we use ⊕A for �A is asserted�, and ⊖A for
�A is rejected�. The notation3

⊕A1, . . . ,⊕An ⊢ ⊕B

is less confusing.

3The similar notations are used in T. Smiley "Rejection 1996 and I. Rum�tt

�Yes and No�, 2000.
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Statements

Meta-statements (or statements, for short) are expressions of form
⊕A � positive or assertions, and ⊖A � negative or rejections,
where A ∈ Frm.

The set of all statements is denoted by S, and by
S+ and S− we denote respectively the set of all positive and the set
of all negative statements.

Uni�ed consequence relation is a binary relation ⊢ de�ned on sets
of statements and statements and satisfying the regular properties
of consequence relation: for any sets Γ,∆ ⊆ S and any α,β ∈ S

α ⊢ α (R)
if Γ ⊢ α and Γ ⊆ ∆, then ∆ ⊢ α (M)
if Γ ⊢ α and α,∆ ⊢ β, then, Γ,∆ ⊢ β. (T )

Relation ⊢ is �nitary if Γ ⊢ α entails Γ′ ⊢ α for some �nite Γ′ ⊆ Γ.
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Logic: theorems

Each uni�ed consequence relation ⊢ de�nes a set of asserting
theorems :

Th+(⊢) ∶= {α ∈ S+ ∣ ⊢ α}

and a set of refuting theorems :

Th−(⊢) ∶= {α ∈ S− ∣ ⊢ α}.

The set Th(⊢) ∶= Th+(⊢) ∪Th−(⊢) is a set of theorems .

Note, that Th+(⊢) ∩Th−(⊢) = ∅ simply because S+ ∩ S− = ∅.
But if we consider the projections onto the set of propositions:

L+ ∶= {A ∈ Frm ∣ ⊕A ∈ Th+(⊢)},

L− ∶= {A ∈ Frm ∣ ⊖A ∈ Th−(⊢)}

the situation is di�erent.

Alex Citkin Deductive systems with uni�ed multiple-conclusion rules



Introduction Uni�ed Logic Multiple-Conclusion Rules

Logic: theorems

Each uni�ed consequence relation ⊢ de�nes a set of asserting
theorems :

Th+(⊢) ∶= {α ∈ S+ ∣ ⊢ α}

and a set of refuting theorems :

Th−(⊢) ∶= {α ∈ S− ∣ ⊢ α}.

The set Th(⊢) ∶= Th+(⊢) ∪Th−(⊢) is a set of theorems .

Note, that Th+(⊢) ∩Th−(⊢) = ∅ simply because S+ ∩ S− = ∅.

But if we consider the projections onto the set of propositions:

L+ ∶= {A ∈ Frm ∣ ⊕A ∈ Th+(⊢)},

L− ∶= {A ∈ Frm ∣ ⊖A ∈ Th−(⊢)}

the situation is di�erent.

Alex Citkin Deductive systems with uni�ed multiple-conclusion rules



Introduction Uni�ed Logic Multiple-Conclusion Rules

Logic: theorems

Each uni�ed consequence relation ⊢ de�nes a set of asserting
theorems :

Th+(⊢) ∶= {α ∈ S+ ∣ ⊢ α}

and a set of refuting theorems :

Th−(⊢) ∶= {α ∈ S− ∣ ⊢ α}.

The set Th(⊢) ∶= Th+(⊢) ∪Th−(⊢) is a set of theorems .

Note, that Th+(⊢) ∩Th−(⊢) = ∅ simply because S+ ∩ S− = ∅.
But if we consider the projections onto the set of propositions:

L+ ∶= {A ∈ Frm ∣ ⊕A ∈ Th+(⊢)},

L− ∶= {A ∈ Frm ∣ ⊖A ∈ Th−(⊢)}

the situation is di�erent.
Alex Citkin Deductive systems with uni�ed multiple-conclusion rules



Introduction Uni�ed Logic Multiple-Conclusion Rules

Introduction: types of refutation

In general, there are two ways of how to handle refutation
syntactically: direct and indirect. To determine whether formula A
is refutable one can do one of two things:

(a) to derive in a meta-logic a statement about refutability of A
( L-proof -  Lukasiewicz-style proof)

(b) to derive from A a formula B that we already know is
refutable, and apply Modus Tollens (i-proof - indirect proof,
Carnap's way)

An existence of an  L-proof entails the existence of i-proof. The
converse is true under some assumptions (some weak form of the
deduction theorem4) and we will revisit this issue later.

4W. Staszek �On Proofs and Rejections�, 1971
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Introduction: Direct refutation, an example

As an example, let us consider a Classical Propositional Calculus
(CPC) with regular set of axioms and rules

⊕A,⊢ ⊕(A→ B)/⊕B (MP)
⊕A/⊕ σ(A), where σ is a substitution (Sb)

And let us extend this calculus to calculus CPC○ by adding an
anti-axiom

⊢ ⊖p,

where p is a propositional variable, and two rules

⊕(A→ B),⊖B/⊖A (MT)
⊖σ(A)/⊖A, where σ is a substitution (Rs)
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Introduction: Direct refutation, an example

 Lukasiewicz has observed that CPC○ is a complete axiomatization
for classical logic. It is clear that every classically valid formula is
derivable in CPC○.

Let A be a formula invalid in CPC. Then, there is a substitution σ
such that ¬σ(A) is valid in CPC. Hence, in CPC (and CPC○) we
have

⊢ σ(A)→ p or ⊢ ⊕(σ(A)→ p) in CPC○.

Therefore, by (MT), we have

⊢ ⊖σ(A)

and, by (Rs), we have
⊢ ⊖A.

Soundness easily follows from the observation that all axioms, the
anti-axiom and the rules are valid in the 2-element Boolean algebra.
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Introduction: Direct refutation, an example

Let us take any intermediate logic I � a logic extending IPC and
contained in CPC, and add the anti-axiom ⊢ ⊖p and the rules MT
and Rs. In such a way we obtain a uni�ed logic I ○.

For any formula A, if I ⊢ A, then I ○ ⊢ ⊕A.

If I ⊬ ¬¬A, then, A is invalid in CPC, and we can repeat the
argument used for CPC and conclude that I ○ ⊢ ⊖A.
We can use the semantic means and conclude that

L+(I ○) = {A ∈ Frm ∣ I ⊢ A},

L−(I ○) = {A ∈ Frm ∣ I ⊬ ¬¬A} = {A ∈ Frm ∣ CPC ⊬ A}.

If I ⊬ A and I ⊬ ¬¬A, then I ○ ⊬ ⊕A and I ○ ⊬ ⊖A. Thus,

L+(I ○) ∪ L−(I ○) ≠ Frm,

that is, I is not full.
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Multiple-Alternative Rules

If Γ,∆ are �nite sets of meta-statements, an ordered pair Γ/∆ is
called a structural multiple-conclusion or multiple-alternative rule
(m-rule for short). The premises Γ are viewed conjunctively, while
the conclusions ∆ are viewed disjunctively.

In general, we divide rules into three categories: if r ∶= Γ/∆ is a rule,
then

r is conclusive if ∆ consists of a single formula
r is inconclusive if ∆ consists of more then one formula
r is terminating if ∆ = ∅

For instance, ⊕p,⊕(p → q)/⊕ q is a conclusive rule;
⊕(p ∨ q)/⊕ p,⊕q is an inconclusive rule; ⊕p,⊖p/∅ is a terminating
rule.
In addition to m-rules, we consider two rules: the rule of
substitution Sb, and the rule of reverse substitution Rs.
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Multiple-Alternative Rules

Multiple-alternative rules allow to explicitly use the proofs by cases.

In the setting of natural deduction, proof by cases looks like this:

A ∨B

[A]

⋮

C

[B]

⋮

C
C

In the multiple-alternative setting, proof by cases looks like this:

A ∨B

A

C

B

C

(p ∨ q)/p,q

By applying rule Γ/∆ we get the alternatives ∆ to be considered
separately.
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Multiple-Alternative Inference

We use ▾ to denote an empty set of premises, and ▴ to denote an
empty set of alternatives. ▾ and ▴ are merely notations and they
are not the symbols of the language or meta-language.

Inferences are �nite trees the nodes of which are labeled by
statements, ▾ or ▴. A leaf labeled by ▴ is teriminating (we have
reduced a case to contradiction), otherwise, it is extendable .

Let R be a set of rules (that may include Sb and/or Rs) and Γ be a
set of statements (which may be empty). An inference from Γ by

R (or (Γ,R)-inference for short) is a �nite tree nodes of which are
labeled by statements, and it is de�ned by induction5:

5Note that we de�ne an inference from (Γ,R) without clarifying what we

are deriving.
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Multiple-Alternative Inference

Like in a Hilbert-style inference, we use the assumptions and apply
the inference rules.

A tree consisting of a single node (a root) labeled by ▾ is a
(Γ,R)-inference (it is needed for a sake of convenience).

Using the assumptions: if I is a (Γ,R)-inference, then any
non-terminal leaf can be extended by adjoining a leaf labeled by a
statement from Γ, and the obtained tree is a (Γ,R)-inference.

Applying the rules: if I is a (Γ,R)-inference, then any non-terminal
leaf λ can be extended by adjoining the leaves labeled by ▴, or by
statements from a �nite set ∆, provided there is an instance Ξ/▴ or
Ξ/∆ of a rule from R, and all statements from Ξ are between λ
and the root. The tree obtained in such a way is a (Γ,R)-inference.
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Multiple-Alternative Inference

Suppose that ξ1,...,ξm
δ1,...,δn

is an instance of a rule from R.

▾

α1 α2 . . . ξ1

. . .

ξm

αk

Ô⇒

▾

α1 α2 . . . ξ1

. . .

ξm

αk

δ1 . . . δn
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Multiple-Alternative Inference

Let Γ,∆ be sets of statements, α be a statement and R be a set of
rules.

De�nition

α is derivable from ∆ by (Γ,R), if there is a (∆ ∪ Γ,R)-inference
each leaf of which is labeled by α or by ▴.

Roughly speaking, α is derivable from ∆ if after we have considered
every case arisen in the proof, we either have derived α, or we have
arrived at a contradiction, meaning, that the case is not possible.

Proposition

Any pair consisting of a set of statements Γ and a set of rules R,
de�nes a consequence relation:

∆ ⊢ α ⇋ α is derivable from ∆ by (Γ,R).
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Multiple-Alternative vs. Classical Inference: an Example

Ñîâà ïðèëîæèëà óõî ê ãðóäè Áóðàòèíî.
- Ïàöèåíò ñêîðåå ìåðòâ, ÷åì æèâ, - ïðîøåïòàëà îíà.

Æàáà ïðîøëåïàëà áîëüøèì ðòîì:
- Ïàöèåíò ñêîðåå æèâ, ÷åì ìåðòâ...

- Îäíî èç äâóõ, - ïðîøåëåñòåë Íàðîäíûé ëåêàðü Áîãîìîë, - èëè
ïàöèåíò æèâ, èëè îí óìåð. Åñëè îí æèâ - îí îñòàíåòñÿ æèâ èëè
îí íå îñòàíåòñÿ æèâ. Åñëè îí ìåðòâ - åãî ìîæíî îæèâèòü èëè
íåëüçÿ îæèâèòü.

Äåâî÷êà âñïëåñíóëà õîðîøåíüêèìè ðóêàìè:
- Íó, êàê æå ìíå åãî ëå÷èòü, ãðàæäàíå?
- Êàñòîðêîé, - êâàêíóëà Æàáà.
- Êàñòîðêîé! - ïðåçðèòåëüíî çàõîõîòàëà Ñîâà.
- Èëè êàñòîðêîé, èëè íå êàñòîðêîé, - ïðîñêðåæåòàë Áîãîìîë.
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Multiple-Alternative Inference

De�nition

Uni�ed deductive system is a pair (Γ,R), where Γ is a set (maybe
empty) of statements, and R is a set (maybe empty) of rules.

Let L = (L+,L−) be a uni�ed logic. A deductive system D is
 L-complete for L, or L is de�ned by D, if

⊢D α ⇐⇒

⎧⎪⎪
⎨
⎪⎪⎩

α = ⊕A and A ∈ L+

α = ⊖A and A ∈ L−.

Any uni�ed deductive system de�nes a uni�ed logic.

If D contains only positive rules, it is C-complete for L, if

⊢D α ⇐⇒

⎧⎪⎪
⎨
⎪⎪⎩

α = ⊕A and A ∈ L+

α = ⊖A and ⊕A ⊢D ⊖B , where ⊖B is an anti-axiom.
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Admissible multiple-alternative rules

An m-rule Γ/∆ is admissible for a given uni�ed logic L, if for each
substitution that makes valid all statements from Γ, at least one
statement from ∆ is valid. ▾ is considered being always valid, and ▴
is considered being always invalid.

For instance, a rule Γ/▴ is admissible for ⊢ if and only if neither
substitution makes valid all statements from Γ.

Proposition

In any intermediate logic, for any formula A,

rule ⊕A/▴ is admissible if and only if rule ▾/⊕ ¬A is admissible.

The proof of ⇐Ô is trivial, while Ô⇒ follows immediately from the
Glivenko Theorem.
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Admissible multiple-alternative rules

In terms of admissible rules, we have the following:

(coherency) a logic is coherent if and only if the rule

Co ∶=
⊕p,⊖p

▴
is admissible;

(fullness) a logic is full if and only if the rule

Fu ∶=
▾

⊕p,⊖p
is admissible.

In what follows, the above m-rules play the central role.

For convenience, we use the notation:

α =

⎧⎪⎪
⎨
⎪⎪⎩

⊖A, when α = ⊕A

⊕A, when α = ⊖A.
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Admissible multiple-alternative rules

Let L be a standard logic. Then, the following holds: for any �nite
sets Γ,∆ and any statement α,

if the rule
α,Γ

∆
is admissible, then the rule

Γ

α,∆
is admissible;

if the rule
Γ

α,∆
is admissible, then the rule

α,Γ

∆
is admissible.

In other words, one can move a statement from premises to
alternatives, or vice-versa, with changing the "sign" of the
statement. For logics without rejection the above makes no sense.
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Admissible multiple-alternative rules

Let L be a standard logic signature of which contains →. If Modus
Ponens is admissible for L, then, all the following eight variations of
Modus Ponens are admissible:

▾

⊖p,⊖(p → q),⊕q
;

⊕p

⊖(p → q),⊕q
;
⊕(p → q)

⊖p,⊕q
;

⊖q

⊖p,⊖(p → q)
;

⊕p,⊕(p → q)

⊕q
;

⊕p,⊖q

⊖(p → q)
;
⊕(p → q),⊖q

⊖p
;
⊕p,⊕(p → q),⊖q

▴
.

By the same argument, for the rule of substitution we have two
variations that are either simultaneously admissible, or
simultaneously not admissible:

⊕A

⊕σ(A)
;
⊖σ(A)

⊖A

Alex Citkin Deductive systems with uni�ed multiple-conclusion rules



Introduction Uni�ed Logic Multiple-Conclusion Rules

Admissible multiple-alternative rules

Let L be a standard logic signature of which contains →. If Modus
Ponens is admissible for L, then, all the following eight variations of
Modus Ponens are admissible:

▾

⊖p,⊖(p → q),⊕q
;

⊕p

⊖(p → q),⊕q
;
⊕(p → q)

⊖p,⊕q
;

⊖q

⊖p,⊖(p → q)
;

⊕p,⊕(p → q)

⊕q
;

⊕p,⊖q

⊖(p → q)
;
⊕(p → q),⊖q

⊖p
;
⊕p,⊕(p → q),⊖q

▴
.

By the same argument, for the rule of substitution we have two
variations that are either simultaneously admissible, or
simultaneously not admissible:

⊕A

⊕σ(A)
;
⊖σ(A)

⊖A

Alex Citkin Deductive systems with uni�ed multiple-conclusion rules



Introduction Uni�ed Logic Multiple-Conclusion Rules

Derivations of rules

Let R be a set of rules and r ∶= Γ/∆ be a rule. We say that r is
derivable from R (in symbols R ⊢ r), if there is a (Γ,R)-inference
all leaves of which do not contain statements not from ∆.

If R is a set of rules and r, r′ are rules, we say that r is derivable
from r′ relative to R (in symbols r′ ⊢R r), if

R, r′ ⊢ r.

r′ ⊢R r means that in any inference, every application of rule r can
be replaced with the suitable applications of rules R and r′. In other
words, rule r can be eliminated from any inference and replaced by
rules R, r′.

The rules Co and Fu allows to derive the di�erent variations of the
given rules from each other. Let

S ∶= {Co,Fu}.
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Reduction of Rs to Sb

Proposition. Sb ⊢S Rs.

▾

⊖σ(A)

⊖A ⊕A

⊕σ(A)

▴

Fu

Sb

Co

Thus, in each deductive system that has postulated rules Co,Fu
and Sb, the rule Rs can be eliminated.
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 L-complete systems

Proposition. MP ⊢S MT.

▾

⊕(A→ B)

⊖B

⊕A

⊕B

▴

⊖A

Fu

MP

Co
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 L-complete systems

Theorem

Let D be a deductive system containing only positive rules and the

rule of substitution. Then, if D is C-complete for a uni�ed logic L,
the system D′ obtained from D by postulating Co and Fu, is
 L-complete.

Example

One can take any calculus that de�nes the classical logic and
contains the rule of substitution, and convert it to a C-complete
deductive system by adding anti-axiom ⊖p. If we add to this
deductive system Co and Fu, we obtain an  L-complete system.
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 L-complete systems

Moreover, if we take any calculus with the rule of substitution
de�ning the classical logic, we can convert it into an  L-complete
deductive system by adding the rules Co, Fu and r ∶= ⊕p,⊕¬p/▴.
The needed anti-axiom ⊖p is derivable:

▾

⊕p

⊕¬p

▴

⊖p

Fu

Sb

r
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Deductive systems

Theorem

For any �nite sets of statements Γ,∆ and any statement α,

Γ, α

∆
⊢S

Γ

∆, α

and
Γ

∆, α
⊢S

Γ, α

∆

Corollary

Let (Γ,R ∪ S) be a deductive system de�ning a uni�ed logic L.
Then there is a system of positive rules R+, such that (Γ,R+ ∪ S)
de�nes L.
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∆
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 L-complete system for the Classical Logic

Theorem

The deductive system consisting of the below rulesa is  L-complete

for the classical logic Cl.

(i) Ei =
⊕p, ⊕(p→q)

⊕q Ii1 =
⊕q

⊕(p→q) Ii2 =
⊕(p→(q→r))

⊖(p→q), ⊕(p→r)

(c) Ecl = ⊕p∧⊕q
⊕p Ecr = ⊕p∧⊕q

⊕q Ic = ⊕p,⊕q
⊕(p∧q)

(d) Edl =
⊖(p∨q)
⊖p Edr =

⊖(p∨q)
⊖q Id =

⊕(p→r),⊕(q→r)
⊕((p∨q)→r)

(n) En = ⊕p, ⊕¬p
▴

In = ▾
⊕p, ⊕¬p

(r) Co = ⊕p, ⊖p
▴

Fu = ▾
⊕p, ⊖p Sb = ⊕A

⊕σ(A)

aThe positive m-rules that de�ne the positive part of Cl are are similar to

m-rules from Shoesmith and Smiley, Multiple-conclusion logic,2008.
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Final remarks

The rule ▾/⊕ p,⊖p (and not the ▾/⊕ p,⊕¬p, or ▾/⊕ (p ∨ ¬p))
expresses the Law of Excluded Middle. The Law of Excluded Middle
is not about disjunction and negation: you may have it for the
systems without disjunction and negation. The Law of Excluded
Middle means that

One always can assert or reject any given proposition.

Accordingly, the rule ⊕p,⊖p/▴ expresses the Law of
Non-Contradiction, which is not about conjunction and negation; it
means that

One cannot assert and reject the same proposition at the same
time.
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Thanks

Thank you for your patience and attention.

Alex Citkin
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