
Логические исследования Logical Investigations
2015. Т. 21. № 2. С. 15–20 2015, vol. 21, no 2, pp. 15–20
УДК 164.07+510.635

V.I. Shalack

On the Definitional Embeddability of Some
Elementary Algebraic Theories into the

First-Order Predicate Calculus

Shalack Vladimir Ivanovich
Department of Logic, Institute of Philosophy, Russian Academy of Sciences.
14/5 Volkhonka St., Moscow, 119991, Russian Federation.
E-mail: shalack@gmail.com

In this article we prove a theorem on the definitional embeddability into first-order
predicate logic without equality of such well-known mathematical theories as group theory
and the theory of Abelian groups. This result may seem surprising, since it is generally
believed that these theories have a non-logical content. It turns out that the central
theory of general algebra are purely logical. Could this be the reason that we find them
in many branches of mathematics? This result will be of interest not only for logicians
and mathematicians but also for philosophers who study foundations of logic and its
relation to mathematics.
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We assume that the language of the first-order predicate calculus is defined
in the standard way as the set of terms and formulas over signature Σ, which
consists of nonlogical relational and functional symbols. We write L(Σ) for
the first-order language with signature Σ. Models are pairs M = 〈D, I〉,
where D is a non-empty set of individuals, and I is an interpretation of
function and predicate symbols in the domain D. The relations M, g |= A —
“formula A is true in the model M with assignment of values to individual
variables g” and M |= A — “formula A is true in the model M ” are defined
in standard way.

1. Defining new predicate symbols
We can use definitions in order to extend the language L(Σ) of theories
with new predicate symbols. The definitions have the form of equivalences
[1, p. 15]:

∀x1 . . . xn(P (x1, . . . , xn) ≡ A (x1, . . . , xn)).

The definition must satisfy the conditions:
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1. P /∈ Σ.

2. A (x1, . . . , xn) ∈ L(Σ).

3. The variables x1, . . . , xn are pairwise distinct.

4. The set of free variables of A (x1, . . . , xn) is included into {x1, . . . , xn}.

After defining of the new predicate symbol P it must be added to the
signature Σ. As a result, there is a transition from the language L(Σ) to the
language L(Σ ∪ {P}).

2. The notion of definitional embedding
Definition 1. The first-order theory T in a language L(Σ) with finite set
of non-logical axioms Ax is definitionally embeddable into predicate calculus
iff there are a signature Σ′ and a set of definitions DT of symbols Σ r Σ′

by formulas of L(Σ′) which met the following condition:

if A ∈ L(Σ) then Ax ⊢ A⇔ DT ⊢ A.

This definition is some variant of the notion of definitional
embeddability of theories which was proposed by V.A. Smirnov [3].

3. The elementary theories of groups, Abelian groups, and
fields

The theory of groups is formulated in the language over signature Σ =
{0,+,=} where “0” is individual constant, “ + ” is 2-ary functional symbol
and “ = ” is 2-place predicate.

The elementary theory of groups has the next non-logical axioms
[2, p. 71].

A. ∀xyz(x+ (y + z) = (x+ y) + z)

B. ∀x(0 + x = x)

C. ∀x∃y(y + x = 0)

D. ∀x(x = x)

E. ∀xy(x = y ⊃ y = x)

F. ∀xyz(x = y ⊃ (y = z ⊃ x = z))
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G. ∀xyz(y = z ⊃ (x+ y = x+ z&y + x = z + x)).

The elementary theory of Abelian groups needs additional axiom of
commutativity [2, p. 71]:

H. ∀xy(x+ y = y + x).

Theorem 1. The elementary theories of groups and Abelian groups
are definitionally embeddable in the first order predicate calculus without
equality.

Proof. We assume that the signature of the first-order predicate calculus
contains the individual constant “0”, the 2-ary functional symbol “ + ”, and
the binary predicate symbol “ ≈ ” but doesn’t contain “ = ”.

We accept the following definition

(DG) ∀xy(x = y ≡ (A& . . .&G)[≈ / =] ⊃ x ≈ y).

The expression (A& . . .&G)[≈ / =] denotes conjunction of the
formulas A−G in which the symbol “ = ” is renamed into “ ≈ ”. And when it
is necessary instead of (A& . . .&G)[≈ / =] we will use the shorthand AG≈.

Let’s check DG ⊢ A& . . .&G.

A. ∀xyz(x+ (y + z) = (x+ y) + z)

1. ⊢ AG≈ ⊃ A[≈ / =]
2. ⊢ AG≈ ⊃ ∀xyz(x+ (y + z) ≈ (x+ y) + z) – from 1
3. ⊢ ∀xyz(AG≈ ⊃ x+ (y + z) ≈ (x+ y) + z) – from 2, because AG≈

is closed
4. DG ⊢ ∀xyz(x+ (y + z) = (x+ y) + z) – from 3 by DG

B. ∀x(0 + x = x)

1. ⊢ AG≈ ⊃ B[≈ / =]
2. ⊢ AG≈ ⊃ ∀x(0 + x ≈ x) – from 1
3. ⊢ ∀x(AG≈ ⊃ 0 + x ≈ x) – from 2
4. DG ⊢ ∀x(0 + x = x) – from 3 by DG

C. ∀x∃y(y + x = 0)
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1. ⊢ AG≈ ⊃ C[≈ / =]
2. ⊢ AG≈ ⊃ ∀x∃y(y + x ≈ 0) – from 1
3. ⊢ ∀x∃y(AG≈ ⊃ y + x ≈ 0) – from 2
4. DG ⊢ ∀x∃y(y + x = 0) – from 3 by DG

D. ∀x(x = x)

1. ⊢ AG≈ ⊃ D[≈ / =]
2. ⊢ AG≈ ⊃ ∀x(x ≈ x) – from 1
3. ⊢ ∀x(AG≈ ⊃ x ≈ x) – from 2
4. DG ⊢ ∀x(x = x) – from 3 by DG

E. ∀xy(x = y ⊃ y = x)

1. ⊢ AG≈ ⊃ E[≈ / =]
2. ⊢ AG≈ ⊃ ∀xy(x ≈ y ⊃ y ≈ x) – from 1
3. ⊢ ∀xy(AG≈ ⊃ (x ≈ y ⊃ y ≈ x)) – from 2
4. ⊢ ∀xy((AG≈ ⊃ x ≈ y) ⊃ (AG≈ ⊃ y ≈ x)) – from 3 by self-distr. ⊃
5. DG ⊢ ∀xy(x = y ⊃ y = x) – from 4 by DG

F. ∀xyz(x = y ⊃ (y = z ⊃ x = z))

1. ⊢ AG≈ ⊃ F [≈ / =]
2. ⊢ AG≈ ⊃ ∀xyz(x ≈ y ⊃ (y ≈ z ⊃ x ≈ z)) – from 1
3. ⊢ ∀xyz(AG≈ ⊃ (x ≈ y ⊃ (y ≈ z ⊃ x ≈ z))) – from 2
4. ⊢ ∀xyz((AG≈ ⊃ x ≈ y) ⊃ (AG≈ ⊃

(y ≈ z ⊃ x ≈ z))) – from 3 by self-distr. ⊃
5. ⊢ ∀xyz((AG≈ ⊃ x ≈ y) ⊃ ((AG≈ ⊃ y ≈ z) ⊃

(AG≈ ⊃ x ≈ z))) – from 4
6. DG ⊢ ∀xyz(x = y ⊃ (y = z ⊃ x = z)) – from 5 by DG

G. ∀xyz(y = z ⊃ (x+ y = x+ z&y + x = z + x))

1. ⊢ AG≈ ⊃ G[≈ / =]
2. ⊢ AG≈ ⊃ ∀xyz(y ≈ z ⊃ (x+ y ≈ x+ z&y + x ≈ z + x)) – from 1
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3. ⊢ ∀xyz(AG≈ ⊃ (y ≈ z ⊃ (x+ y ≈ x+ z&y + x ≈ z + x))) – from 2
4. ⊢ ∀xyz((AG≈ ⊃ y ≈ z) ⊃

(AG≈ ⊃ (x+ y ≈ x+ z&y + x ≈ z + x))) – from 3 by
self-distr. ⊃

5. ⊢ ∀xyz((AG≈ ⊃ y ≈ z) ⊃ ((AG≈ ⊃ x+ y ≈ x+ z)&
(AG≈ ⊃ y + x ≈ z + x))) – from 4

6. DG ⊢ ∀xyz(y = z ⊃ (x+ y = x+ z&y + x = z + x)) – from 5
by DG

We have shown that for every formula U ∈ LTG if A& . . .&G ⊢TG U
then DG ⊢ U .

For the Abelian groups we introduce the following definition:

(DA) ∀xy(x = y ≡ (A& . . .&H)[≈ / =] ⊃ x ≈ y).

The expression (A& . . .&H)[≈ / =] denotes conjunction of the
formulas A−H, in which the symbol “ = ” is renamed into “ ≈ ”. And when
it is necessary instead of (A& . . .&H)[≈ / =] we will use the shorthand
AH≈.

Let’s check DA ⊢ A& . . .&H.

H. ∀xy(x+ y = y + x)

1. ⊢ AH≈ ⊃ H[≈ / =]
2. ⊢ AH≈ ⊃ ∀xy(x+ y ≈ y + x) – from 1
3. ⊢ ∀xy(AH≈ ⊃ x+ y ≈ y + x) – from 2
4. DA ⊢ ∀xy(x+ y = y + x) – from 3 by DA

Thus, we have shown that for every formula U ∈ LTGA if
A& . . .&H ⊢TGA U then DA ⊢ U .

It remains to show that for every formula U ∈ LTG/TGA/TF if
DG/DA ⊢ U then ⊢TG/TGA U . The proof is the same for all theories.
We present the proof of TG.

Let us assume, that DG ⊢ U but not A& . . .&G ⊢ U . By the
completeness theorem of the first-order predicate logic it follows, that
DG |= U , and there exists such a model M = < D, I > of theory TG
and an assignment of values to individual variables g that M |= A& . . .&G
and M, g |= ¬U .
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We can extend the model M = < D, I > to the model M ’ = < D, I’ >
in which the formula DG is true. It is sufficient to expand the domain of
the function I so that the new function of interpretation I’ ascribes value
I’(≈) = I(=) to predicate symbol “≈”, and for all other functional and
predicate symbols it retains the same values as I.

Since M |= A& . . .&G, then in the model M ’ = < D, I’ > by the
definition of I’ we will have M ’ |= (A& . . .&G)[≈ / =] and hence M ’ |=
x1 = x2 ≡ ((A& . . .&G)[≈ / =] ⊃ x1 ≈ x2). It follows that DG is true in
the model M ’. Therefore by our assumption DG |= U it must be M ’, g |= U .
However, the formula U does not contain the symbol “ ≈ ”, while all other
descriptive symbols are interpreted in the same way as in the model M , and
by our assumption M, g |= ¬U it must be M ’, g |= ¬U . We have obtained
the contradiction. Therefore the assumption that A& . . .&G ⊢ U does not
hold, is false. 2

4. Comments
The theorem contradicts to our usual conviction that listed therein
elementary algebraic theories carry some non-logical information about their
models. That’s not so. It turns out that we can use the language of the
first-order predicate calculus, and without resorting to the postulation of
non-logical axioms, to build these theories with help of usual definitions.

This result is the consequence of a more general theorem on sufficient
conditions for theories be definitionally embeddable into the first-order
predicate calculus. The general theorem will be published in the near future,
but we can already say that it has a lot of effects that force for a fresh look
at the many well-known theories.
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