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The general aim of the present paper is to provide the analysis of the connection between
proof-theoretical and functional properties of certain logical matrices. To be more precise,
we consider the class of three-valued matrices that induce the classical consequence
relation and show that their operations always constitute a subset of one of the maximal
classes of functions, which preserve non-trivial equivalence relations. We use a matrix
with the single designated value as a sample for in-depth analysis, and generalize the
results to suit other cases. Furthermore, on the basis of obtained results we conclude the
paper with methodological considerations concerning the nature and interpretation of
the truth-values in logical matrices.
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1. Introduction
The results presented below belong to the intersection of two prominent
fields of modern logic, theory of logical calculi and algebra of logic. The
problem that we deal with can be generally described in the form of a
question: can we establish the link between a logical consequence relation
and the algebraic properties of a matrix which induces it? For the standard
two-valued matrix of the classical propositional calculus (K) the answer is
clear, as it is a well known fact that Boolean algebra is the algebra of K, the
set of its basic operations is complete in P2, and it contains countable-many
closed classes of functions [10, 5]. However, none of the above is the case if we
consider the three-valued matrices for K. No three-valued Boolean algebras
exist, the consequence relation in Post’s three-valued logic is different from
the classical one, and, as we will show in the sequel, there are matrices for
K, which contain continuum-many subclasses. The differences between two-
valued and three-valued matrices for K make it of interest to investigate
the functional properties of the latter. Such an investigation constitutes the
subject of the presented research.

1The paper is supported by Russian Foundation for Humanities, project № 14-03-
00341.
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The structure of the paper is as follows. First, we define the necessary
concepts, including one of a matrix for an arbitrary propositional language,
which induces the classical consequence relation. Then, we present the
necessary and sufficient conditions for a three-valued matrix to induce
the classical consequence relation. In what follows, we analyze functional
properties of the matrices that fulfill this condition, and show the connection
of the basic operations of such matrices to the maximal classes of P3. The
final section of the paper is dedicated to the theoretical analysis of the
technical results we have obtained.

2. Three-valued matrices which induce the classical
consequence relation

We define a propositional (sentential) language as an algebra S =
⟨S, §1, §2, . . . , §n⟩, where S is the set of formulae, and §1, §2, . . . , §n are
functions on S. We will assume that a(§ki ) = k ≥ 1 for at least some
1 ≤ i ≤ n. Given a set V ar(S) = {p1, p2, . . . , pi, . . . } of the propositional
variables of S, we define the contents of S inductively:

• If α ∈ V ar(S), then α ∈ S;

• if {α1, α2, ..., αk} ⊆ S and §ki ∈ S (a(§ki ) = k), then §ki (α1, α2, ..., αk) ∈
S;

• there are no other elements in S.

A logical matrix M = ⟨A, D⟩ is a structure, where A = ⟨A,F ⟩ is an
algebra, and D is a non-empty proper subset of A. The elements of D will
be referred to as designated values. If ⟨S, §1, . . . , §n⟩ and ⟨A,F ⟩ are of the
same type, then M is a matrix for S, and a homomorphism v from S into
A will be called a valuation of S-formula in M.

By consequence relation induced by M we will denote the set �M=
{⟨X,α⟩|X �M α}, where X �M α ({X ∪ α} ⊆ S) iff for every valuation v
in M it is true that v(α) ∈ D whenever v(X) ⊆ D.

Let S be such a language that there is a matrix K = ⟨{0, 1}, FK, {1}⟩
for S, where [FK] = P2, where [FK] is the closure if FK under Mal’tsev
operations [8]. We will say that the consequence relation induced by a matrix
M for S is classical iff �M=�K.

Now we need to introduce the concept of matrix homomorphism [15, 9].
Let M = ⟨A, D⟩ and M′ = ⟨A′, D′⟩ be matrices of the same type. A
homomorphism h from A into A′ is said to be a homomorphism from M
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into M′ iff h(D) ⊆ D′. If it also holds that h−1(D′) = D, h is said to be a
matrix (or strong) homomorphism.

The following theorem can be proved [1]:

Theorem 1. Let M3 = ⟨{0, 1, 2}, F,D⟩ be a matrix of the same type as K.
Then �M3= �K iff there is a matrix homomorphism from M3 into K.

In other words, the consequence relation induced by a three-valued
matrix M3 is classical iff for every n-ary function of its algebra it is true
that

h(f(a1, a2, . . . , an)) = fK(h(a1), h(a2), . . . , h(an)),

where h(ai) = 1, if ai ∈ D, and h(ai) = 0 otherwise, for every ai ∈ {0, 1, 2}
(1 ≤ i ≤ n).

In the usual manner, we can make a transition from the matrix
homomorphism to the matrix congruence:

⟨a1, a′1⟩ ∈ κh ⇔ h(a1) = h(a′1).

As we have limited ourselves to the three-valued case, the matrices we
consider can only differ by the elements of [F ] and D. Obviously, the choice
of D impacts the structure of κh. For example,

• if D = {2}, then ⟨0, 1⟩ ∈ κh;

• if D = {1, 2}, then ⟨1, 2⟩ ∈ κh.

As soon as we determine, what is the class of designated values of
M3 which determines the structure of matrix congruence κh on M3, the
contents of [F ] become the only variable.

This allows us to introduce a concept of the classical functions on
{0, 1, 2}. It will be said that an n-ary function f on {0, 1, 2} is classical in
respect to D iff it satisfies the following condition:

{⟨a1, a′1⟩, ⟨a2, a′2⟩, . . . , ⟨an, a′n⟩} ⊆ κh ⇒
⟨f(a1, a2, . . . , an), f(a′1, a′2, . . . , a′n)⟩ ∈ κh,

where κh depends on the contents of D. Obviously, if �M3= �K, then all
functions from [F ] are classical.

In the following section we shall investigate the properties of the class
of functions which are classical in respect to D = {2}, and the matrix which
contains all of such operations.
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3. The maximal three-valued matrix with operations
which are classical in respect to D = {2}

S.V. Jablonskij has described all 18 classes of functions maximal in P3,
including the three classes of type U , the maximal classes of functions, which
preserve non-trivial equivalence relations [4]. For us, of special interest is
the class U2, which is defined as follows:

f(x1, x2, . . . , xn) ∈ U2, iff for all 1 ≤ i1 < i2 < · · · < is ≤ n on all sets
of values {b1, b2, . . . , bn}, where

bm =

{
2 , if m = il (l = 1, 2, . . . , s),

̸= 2 otherwise,

function f(x1, x2, . . . , xn) either returns values from {0, 1} exclusively, or is
equivalent to 2.

One can observe that

F2 = {f(x1, x2, . . . , xn)|{⟨a1, a′1⟩, ⟨a2, a′2⟩, . . . , ⟨an, a′n⟩} ⊆ κ2 ⇒
⟨f(a1, a2, . . . , an), f(a′1, a′2, . . . , a′n)⟩ ∈ κ2} coincides with U2.

In other words, U2 is exactly the class of functions which are classical in
respect to D = {2}.

Now we will build a three-valued matrix containing all functions which
are classical in respect to D = {2}. First, let us consider some operations
and show that each of them satisfies the definition of a function from U2.

f∧ 2 1 0
2 2 1 0
1 1 1 0
0 0 0 0

Suppose s = 0. We have four value sets: ⟨0, 0⟩, ⟨0, 1⟩, ⟨1, 0⟩, ⟨1, 1⟩, and
f∧(0, 0) = f∧(0, 1) = f∧(1, 0) = 0, f∧(1, 1) = 1.

Suppose s = 1. For i1 = 1 we have ⟨2, 0⟩, ⟨2, 1⟩. For i1 = 2 we have
⟨0, 2⟩, ⟨1, 2⟩. And f∧(2, 0) = f∧(0, 2) = 0, f∧(2, 1) = f∧(1, 2) = 1.

For s = 2 we have one value set: ⟨2, 2⟩, and f∧(2, 2) = 2.

f∨ 2 1 0
2 2 2 2
1 2 1 1
0 2 1 0
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Suppose s = 0. We have four value sets: ⟨0, 0⟩, ⟨0, 1⟩, ⟨1, 0⟩, ⟨1, 1⟩, and
f∨(0, 0) = 0, f∨(0, 1) = f∨(1, 0) = f∨(1, 1) = 1.

Suppose s = 1. For i1 = 1 we have ⟨2, 0⟩, ⟨2, 1⟩. For i1 = 2 we have
⟨0, 2⟩, ⟨1, 2⟩. And f∨(2, 0) = f∨(2, 1) = f∨(0, 2) = f∨(1, 2) = 2.

For s = 2 we have one value set: ⟨2, 2⟩, and f∨(2, 2) = 2.

f⊃ 2 1 0
2 2 0 1
1 2 2 2
0 2 2 2

Suppose s = 0. We have four value sets: ⟨0, 0⟩, ⟨0, 1⟩, ⟨1, 0⟩, ⟨1, 1⟩, and
f⊃(0, 0) = f⊃(0, 1) = f⊃(1, 0) = f⊃(1, 1) = 2.

Suppose s = 1. For i1 = 1 we have ⟨2, 0⟩, ⟨2, 1⟩. For i1 = 2 we have
⟨0, 2⟩, ⟨1, 2⟩. And f⊃(2, 0) = 1, f⊃(2, 1) = 0, f⊃(0, 2) = f⊃(1, 2) = 2. For
s = 2 we have one value set: ⟨2, 2⟩, and f⊃(2, 2) = 2.

x1 f¬(x1)

2 0
1 2
0 2

For s = 0 we have f¬(0) = f¬(1) = 2. For s = 1 we have f¬(2) = 0.
Now, consider the matrices M1

max = ⟨{0, 1, 2},F1
max, {2}⟩, where

F1
max = {f∧, f∨, f⊃, f¬}, and MK = ⟨{0, 1}, FK, {1}⟩, where FK =

{g∧, g∨, g⊃, g¬}.

g∧ 1 0
1 1 0
0 0 0

g∨ 1 0
1 1 1
0 1 0

g⊃ 1 0
1 1 0
0 1 1

x g¬(x)

1 0
0 1

A propositional language L = ⟨L,∧,∨,⊃,¬⟩ is said to be standard.
Both M1

max and MK are matrices for L. Moreover, [FK] = P2. It is easy to
check that �M1

max
= �MK . Therefore, the consequence relation induced by

M1
max is classical.

Lemma 1. [F1
max] is maximal in P3.

In other words,

∀f(x1, x2, . . . , xn)(f(x1, x2, . . . , xn) /∈ [F1
max] ⇒

[F1
max ∪ {f(x1, x2, . . . , xn)}] = P3),
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where P3 is the class of all functions on {0, 1, 2}, and f(x1, x2, . . . , xn) ∈ P3.

Proof. It is sufficient to show that every function, which is classical in
respect to {2}, is equivalent to a superposition of the functions of F1

max.
The following functions belong to [F1

max] (to simplify the notation, we
write «§» instead of «f§», where § ∈ {∧,∨,⊃,¬}).

• N(x) = (x ⊃ x) ⊃ x;

• I ′2(x) = ¬¬x ∧ N¬x;

• I ′1(x) = N((¬x ∧ Nx) ∨ (¬¬x ∧ N¬x));

• I ′0(x) = ¬x ∧ Nx.

x N I ′2 I ′1 I ′0
2 2 1 0 0
1 0 0 1 0
0 1 0 0 1

Consider the function
n
∧
i=1

Iai(xi) = Ia1(x1) ∧ Ia2(x2) ∧ · · · ∧ Ian(xn),

where Iai(xi) = ¬¬xi, if ai = 2, and Iai(xi) = ¬xi, if ai ∈ {0, 1}. The
function

n
∧
i=1

Iai(xi) produces the value 2, if xi = ai = 2, or xi ∈ {0, 1} and

ai ∈ {0, 1}, and it produces the value 0 otherwise.
Moreover, the function

n
∨
i=1

I ′ai(xi) = I ′a1(x1) ∨ I ′a2(x2) ∨ · · · ∨ I ′an(xn)

produces the value 1, if xi = ai for every i, and the value 0 otherwise.
Let f(x1, x2, . . . , xn) be a function which is classical in respect to {2}.

Assume f(x1, x2, . . . , xn) = 2, only when xi = bji (1 ≤ j ≤ k) for the sets
of values (b11 , b12 , . . . , b1n), (b21 , b22 , . . . , b2n), . . . , (bk1 , bk2 , . . . , bkn). Since
f(bj1 , bj2 , . . . , bjn) = 2 iff f(bj∗1 , bj∗2 , . . . , bj∗n) = 2, where bj∗i = 0, if bji = 1,
and bj∗i = bji otherwise,

k
∨
j=1

(
n
∧
i=1

Ibji (xi)) = (
n
∧
i=1

Ib1i (xi)) ∨ (
n
∧
i=1

Ib2i (xi)) ∨ · · · ∨ (
n
∧
i=1

Ibki (xi))



On the ‘classical’ operations in three-valued logics 67

is a function, which produces the value 2, if f(x1, x2, . . . , xn) = 2, and the
value 0 otherwise.

Now assume f(x1, x2, . . . , xn) = 1, only when xi = cj′i (1 ≤
j′ ≤ m) for the sets of values (c11 , c12 , . . . , c1n), (c21 , c22 , . . . , c2n), . . . ,
(cm1 , cm2 , . . . , cmn). Then there is a function

m
∨

j′=1
(

n
∧
i=1

I ′cj′
i

(xi)) = (
n
∨
i=1

I ′c1i
(xi)) ∨ (

n
∨
i=1

I ′c2i
(xi)) ∨ · · · ∨ (

n
∨
i=1

I ′cmi
(xi)),

where
m
∨

j′=1
(

n
∧
i=1

Icj′
i
(xi)) produces the value 1, if f(x1, x2, . . . , xn) = 1, and

the value 0 otherwise.
If f(x1, x2, . . . , xn) = 1, then

k
∨
j=1

(
n
∧
i=1

Ibji (xi)) = 0, hence the following

holds:
k
∨
j=1

(
n
∧
i=1

Ibji (xi)) ∨
m
∨

j′=1
(

n
∧
i=1

I ′cj′
i

(xi)) = f(x1, x2, . . . , xn).

Therefore, every function which is classical in respect to {2} is
equivalent to a superposition of the functions of F1

max. As the class of
functions, which are classical in respect to {2}, coincides with U2, and U2

is maximal in P3, F1
max is maximal in P3. 2

4. Generalizations and analysis
Our definition of the class D of designated values implies the following
options: {0, 1}, {0, 2}, {1, 2}, {0}, {1}, {2}. Similarly to the case when
D = {2}, the classes of functions which are classical in respect to other
sets of designated values ([FD]) coincide with one of the three classes of
functions, which preserve non-trivial equivalence relations — U2, U1, U0.
The classes U2, U1, and U0 are pairwise dual and, therefore, isomorphic [4].
So all results obtained for D = {2} can be easily generalized for other sets
of designated values. The relations between the classes of classical functions
and the classes of the type U are as follows:

• [F{0,1}] = [F{2}] = U2.

• [F{0,2}] = [F{1}] = U1.

• [F{1,2}] = [F{0}] = U0.

As shown above, in all three cases FD = UD and FA\D = UD.
If we adopt the usual view of truth-values as degrees of truth, this can



68 L.Yu. Devyatkin

seem counterintuitive. However, it is perfectly in line with G. Malinowski’s
observation that we can pick D = {0} in a two-valued matrix [7]. This way
we are able obtain two classical two-valued logics — «truth-based» with
D = {1}, and «falsity-based» with D = {0}.

Let us also note that even in the case of D = {2} there are classical
operations that do not satisfy the «normality» condition (see [3, 13] for
discussion of C-normality and [14] for analysis concerning implication in
particular). For example, f⊃ ∈ F1

max is a classical implication in terms of
the current paper. But f⊃(2, 0) = 1, and that contradicts the idea that a
«normal» implication must preserve the classical truth-values.

Another point worth investigating is the power of the sets of all
subclasses of classical functions. The set of functions of two-valued classical
logic is complete in P2. And P2 has countable-many subclasses. However,
each of U0, U1, and U2 has continuum-many subclasses [6]. Therefore,
every maximal set of classical functions has continuum-many subclasses.
Moreover, the set of functions of Heyting’s three-valued logic G3 has
continuum-many subclasses as well [12], and it is a proper subset of U0.
This shows that the fact we pointed out holds even for non-maximal sets of
classical operations. Although the sets of classical functions with countable-
many subclasses exist as well. Consider the following operations:

∩ 2 1 0
2 2 0 0
1 0 0 0
0 0 0 0

∪ 2 1 0
2 2 2 2
1 2 0 0
0 2 0 0

⊃ 2 1 0
2 2 0 0
1 2 2 2
0 2 2 2

x ¬x
2 0
1 2
0 2

The matrix ⟨{0, 1, 2},∩,∪,⊃,¬, {2}⟩ is a submatrix of Bochvar’s
three-valued logic B3 [2]. As Bochvar pointed out, the fragment of
B3 determined by this matrix is isomorphic to K. Indeed, the class
[{⊃ ,¬}] (∩ and ∪ are not independent from {⊃ ,¬}) is a closed
class of operations which are classical in respect to D = {2}. While
the set of functions of B3 itself contains continuum-many subclasses
[11], for every function f(x1, x2, . . . , xn) ∈ [{⊃ ,¬}] it is true that
f(a1, a2, . . . , ai−1, 1, ai+1, . . . , an) = f(a1, a2, . . . , ai−1, 0, ai+1, . . . , an) for
every a1, a2, . . . , an (aj ∈ {0, 1, 2}). Hence, [{⊃ ,¬}] is isomorphic to P2,
and, therefore, contains countable-many closed subclasses.
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