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1 Preliminaries

The subject under our consideration is an expressive power of temporal
modalities used in such logics as CTL*, CTL, LTL, ATL*, ATL, etc.,
see [1, 7, 9, 18]. Here we dwell on the modalities of CTL but the
argumentation below remains to be applicable for other logics, too (and
we shall show this).

All the logics mentioned above are defined via Kripke semantics, and are
Kripke complete by their definitions. It is known that they are decidable
and even that the corresponding decision problems are complete in such
classes as PSPACE (for LTL, see [21]), EXPTIME (for CTL and ATL,
see [11, 24]), and 2-EXPTIME (for CTL* and ATL*, see [12, 19, 23]).
As a corollary of their decidability, they have decidable axiomatizations.
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But note that some modalities of these logics are not first-order definable
(by means of appropriate first-order languages describing Kripke structures)
and ‘contain’ an expressive power that may be not seen if we consider propo-
sitional languages only. Therefore, to show some possibilities of the modal-
ities we add them to the first-order classical language and then propose
and discuss some facts concerning logics and classes of logics in resulting
languages.

Mathematical results presented here, in fact, follow from constructions
used to prove that some first-order logics defined by classes of Kripke frames
are not recursively enumerable. So the reader may see on this paper as a
discussion on just one of corollaries from such proofs.

2 Decidability and recursive enumerability

Here we just recall the notions of decidability and recursive enumerability.
Let U be some universal set (for our purposes it is sufficient U to be the set
of all formulas in a certain language) and let X be a subset of U. Then X
is called decidable if there exists an algorithm 2{ such that, for any x € U,

1, ifxeX,
Ae) = {o, ifr g X.

If X is not a decidable set then it is called undecidable. The set X is called
recursive enumerable if X = & or there exists an algorithm 2 such that
X ={2(n) : n € N}, i.e., there exists an algorithm enumerating elements
in X. Note also that X is recursively enumerable if and only if there exists
an algorithm %A such that, for any x € U,

_ something, if x € X,
Uz) = { not defined, if x & X,

i.e. X is the domain of the algorithm 2(. For more details see [8, 13, 20].

3 Calculi

Let us clarify what we mean by a calculus. Usually it is assumed that
calculus is defined by a set of axioms and a set of inference rules. Both sets
together, in fact, generate a set of derivable formulas. For our purposes it is
important to be sure that such generation can be realized as an algorithmic
procedure. Therefore we just add the following natural conditions: the set
of axioms and the set of inference rules must be recursively enumerable
and every inference rule must be realizable as an algorithm. The only
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property of calculi we are going to use is that the set of derivable formulas
is recursively enumerable; it is ensured by the conditions.

Note, by the way, that any calculus with finite set of axioms and finite
set of finitary inference rules, of course, satisfies both conditions above.

Below we sometimes equate a calculus to the set of all formulas derivable
in it.

4 Language under consideration

Let us fix a language £ containing a countable set of individual variables,
a countable set of predicate letters of any arity (for every m € IN, the lan-
guage contains a countable set of m-ary predicate letters), A (conjunction),
V (disjunction), — (implication), — (negation), quantifiers on individual
variables Vo and 3z (for every variable x), modalities AX, AF, EU, and
technical symbols (comma and parentheses). In other words, we enrich the
classical first-order language with the modalities of CTL. Formulas are
constructed in the usual way: if x1, ..., x,, are variables, P is m-ary pred-
icate letter then P(x1,...,2,,) is a formula; if ¢ and 1 are formulas and z
is a variable then (p A ), (¢ V), (¢ = V), ~p, Ve, Jx v, AXp, AFp,
and (pEU%) are formulas, too.

5 Kripke semantics

By a Kripke frame here we understand a triple § = (W, R, D) where W is
a non-empty set of states, R is a serial binary accessibility relation on W,
and D is a function associating with every state s its domain (i.e., some
non-empty set of individuals) such that D(s) C D(t) whenever sRt, for
any s,t € W. Kripke model on a frame § is a pair 9 = (§, [)where I is
an interpretation of predicate letters in the domains of states, i.e., if P is
n-ary predicate letter and s is a state then I(s, P) is an n-ary relation on
D(s).

An infinite sequence m = sg,S1,89,... is called path in a frame
§ = (W,R,D) if, for any k € IN, we have s € W and spRskr1. We
assume that m; denotes the k-th element of the path 7. We say that a path
7 starts from a state s if mg = s. Note that, because R is serial, for any
s € W, there is at least one path in § starting from s.

Let s be a state in a frame § = (W, R, D). A function « is called inter-
pretation of individual variables in s if a(z;) € D(w), for every individual
variable x;.
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Note that if s’ is accessible from s and « is an interpretation of individual
variables in s then « is an interpretation of individual variables in s’, too,
because in this case we have D(w) C D(w').

For any individual variable z, let us define the binary relation = on
interpretations: for interpretations o and 8 we put

aZpB = a(y)=pB(y), for any variable y such that y # z.

Let M = (F,I) be a model on a serial frame § = (W, R, D). We define
the truth relation ‘a formula ¢ is true at a state s € W in a model 9T under
an interpretation « of individual variables in s” inductively (by constructing
of ¢). We put

(M, s) E* P(x1,...,2m) = {a(z1),...,0(zn)) € I(s, P)

where P is m-ary predicate letter, 1, ..., x,, are individual variables. For
other formulas the relation is defined as follows:

M, 5) E* prApe = (M, s) = o1 and (M, s) = po;
M, s) E* o1V = (Ms) E* o1 or (M, s) = o3
(M, s) E* o1 = w2 = (Mys) F* o1 or (M, 5) = o3
(9, 5) =~ = (M, s) F* o3

(M, s) F* AXp; = for any path 7 starting from s the
relation (M, m1) =Y ¢y is true;

(M, s) E* AF ¢, = for any path 7 starting from s
there is some k£ € IN such that

(M, 71) = 013

(M, s) =* p1EUps = for some path = starting in s
and some k € IN such that
(M, 7)) = w2 and, for any j € N,
such that j < k the relation
(M, ;) =% 1 is true;

(M, s) = Vi = for any interpretation S such that
B2 aand (x;) € D(s) the relation
(M, s) =7 1 is true;
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(M, s) E~ Fzipr = there is an interpretation [ such
that 8 2 «, B(z;) € D(s), and
(Dﬁa 3) ):ﬁ P1-

As usual, a formula is said to be true in a model if it is true at any state
in it; a formula is said to be true in a frame if it is true in any model on
the frame; a formula is said to be true in a class of frames if it is true in
any frame in the class.

Let us define the logic QCTL as the set of formulas that are true in the
class of all (serial) Kripke frames.

6 Kripke completeness

We say that a set L of formulas is Kripke complete if there is a class of
Kripke frames such that L coincides with the set of all formulas that are
true in the class.

Note that if a set L is Kripke complete then it is closed, at least, under
modus ponens, generalization, and predicate substitution, i.e., L may be
viewed as a logic.

For example, QCTL is Kripke complete by its definition; any proper
subset of QCTL is not Kripke complete (if we do not restrict the language
and do not extend the class of frames, of course).

7 Logic QCTLIinCD

For some technical purposes we need to define a special extension of QCTL.
We call a frame linear if the reflexive and transitive closure of its accessi-
bility relation is linear. The frame (W, R, D) is said to be a frame with
constant domains if D(s) = D(t) whenever sRt, for any s,t € W. Define
QCTLIinCD as the set of formulas complete under the class of all linear
frames with constant domains.

8 Class of Kripke incomplete calculi

Here we just propose and prove a statement which reflects the topic of the
paper.

THEOREM 1. Let S be a calculus such that S C QCTLIinCD. Then S is
not Kripke complete.

PROOF. Let us denote by QCLy;, the classical theory of finite models.
In [15] it is proved that there is a translation E'mb such that, for any closed
classical first-order formula ¢,

¢ € QCLy;, <= FEmb(p) € QCTL.
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More exactly, it is shown that, for any closed classical first-order formula ¢,

¢ € QCLy;, = Emb(p) € QCTL;
¢ € QCLy;, = Emb(p) ¢ QCTLLnCD.

The second implication follows from the fact that if ¢ ¢ QCLy,, then
Emb(p) is refuted in a linear frame with constant domains (for details
see [15]).

Because QCLy;, is not recursively enumerable [6], from these two im-
plications it immediately follows that any set of formulas between QCTL
and QCTLIinCD is not recursively enumerable, too. Indeed, let L be
any set of formulas such that QCTL C L C QCTLIinCD. Let ¢ be a
closed first-order formula. If ¢ € QCLy;, then, by the first implication
Emb(¢) € QCTL, and hence, Emb(¢) € L; if ¢ ¢ QCLy;, then, by the
second implication, Emb(p) ¢ QCTL1linCD, and hence, Emb(yp) ¢ L.
Therefore,

¢ € QCLy;,, <= Emb(p) € L,

and, as a corollary, L is not recursively enumerable.

Suppose that S is Kripke complete. Then QCTL C S. To-
gether with the condition that § C QCTLLnCD it means that
QCTL C S € QCTLILnCD, and hence it is not recursively enumerable.
But this is impossible because S is a calculus. From the contradiction it
follows that S is not Kripke complete. The theorem is proved. O

9 Discussion

Now we have got a matter for our discussion: the theorem and its proof.
Both the theorem and the proof are quite short but we want to show some
hidden details.

9.1 Examples of Kripke incomplete calculi

First of all, we give an explanation how to apply the theorem. Suppose we
have some calculus S with a set of axioms A and a set of inference rules R.
Suppose also that we are able to check, for every ¢ € A, whether ¢ is true
in the class of all linear frames with constant domains and, for every rule
in R, whether the rule is admissible in the same class (note, by the way,
that there is no general procedure solving these tasks [15] but sometimes it
is not the case for particular calculi). Then, if for every axiom and every
rule the check is OK, then by the theorem we may conclude that S is not
Kripke complete.
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We give an example. Let A = CTL U QCL, where QCL is the classical
first-order logic, and let R be consisting of modus ponens, generalization,
and substitution. Then the calculus defined by A and R is not Kripke
complete.

If we extend the calculus with any formulas that are true in linear frames
with constant domains (for example, bounded width formulas, bounded
branching formulas, Barcan formula, etc.) and inference rules preserving
validity in all such frames (for example, necessitation rule for the modality
AX) then we again obtain a Kripke incomplete calculus.

9.2 Possibility of constructive proofs for the theorem

Note that the proof presented here is not constructive: to prove the theorem
we suppose it to be wrong and then obtain a contradiction. To give a
constructive proof we must construct a formula ¢ that is not derivable in
S but true in any Kripke frame for S.

Obviously, there is no such a formula for all calculi. Indeed, suppose
@ is not derivable in any calculus S such that S € QCTLIinCD but
v € QCTLIinCD. If we add ¢ to S as an extra axiom then we obtain
a calculus included into QCTLIinCD and containing ¢, that gives us a
contradiction.

Therefore, to get a constructive proof we need an effective procedure
finding, for any calculus S such that S C QCTLIinCD, a formula pg such
that g € QCTLLnCD but (g is not derivable in S. The problem is in
that the set of all such calculi (i.e., in fact, the set of inputs for the proce-
dure) is not effectively definable because it is not recursively enumerable.
Indeed, let S, = {¢}, for every formula ¢ (i.e., S, is a calculus with one ax-
iom and without inference rules). Then the set {S, : S, € QCTLIinCD}
coincides with the set {{¢} : ¢ € QCTLIinCD} and hence it is not re-
cursively enumerable. The same argumentation (with slight modifications)
works also for calculus containing QCL and closed under some ‘natural’
inference rules; we leave details to the reader.

Nevertheless, of course, there are constructive ways to prove nearly the
same theorem. Because any formula is constructed effectively, by the theo-
rem we have that for any calculus S such that S C QCTLIinCD there is
an algorithm constructing a formula g such that g € QCTLILinCD but
g is not derivable in S. Therefore, for any particular calculus S there is
a constructive proof of its Kripke incompleteness. Clearly, if S’ C S and
¢ is not derivable in S then ¢ is not derivable in S’, too. Hence, we may
replace QCTLIinCD in the theorem with any particular calculus and then
obtain a constructive proof. For example, instead of QCTLIinCD we may
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take a calculus containing QCL, CTL, linearity axiom, Barcan formula
and closed under substitution, modus ponens, generalization, and maybe
some other inference rules.

We did not try to obtain a constructive proof this way, and here we leave
the details of the question to the reader.

9.3 Extensions of the language

Note that CTL is a fragment of CTL* and, modulo some translation, it
is also a fragment of ATL and ATL*. It means that we can repeat our
argumentation for logics QCTL*, QATL, QATL" (the reader may define
them using corresponding Kripke semantics for CTL*, ATL, ATL"). But,
in fact, we do not need it: it is enough to use the theorem for calculi
in extended language. Let us understand L-fragment of a calculus (in a
language extending L) as a set consisting of all formulas derivable in the
calculus that are in £ (maybe, modulo a certain translation).

COROLLARY 1. Let S be a calculus in the language of QCTL*, QATL or
QATL* such that the L-fragment of S is a subset of QCTLIinCD. Then
S is mot Kripke complete.

Moreover, we may imagine a situation when we deal with some different
language allowing to express £ inside of it. Then the corollary is true, too.

9.4 Fragments of the language

Now let us turn to another ‘direction’, and put the following question: what
happens if we restrict L7

Due to S.Kripke [16], if we restrict £ with just unary predicate letters
then both the theorem and the corollary are still true; moreover, we propose
a hypothesis that sometimes even one unary letter is enough [3, 4]. As for
individual variables, we think that three ones are enough; maybe even
two [14]. But here we discuss the modalities, therefore we consider some
restrictions on their using.

In accordance with literature on CTL, we distinguish five ‘basic’ modal-
ities: AX, AG, AF, EU, and AU. Formally, the language £ already
contains AX, AF, and EU, therefore we define just AG and AU:
AGyp = ~E((¢ = 9)U~y), A(@Uy) = AFp A 2E(—~U(=¢ A —1))).
Note that we also may define five dual modalities (known as EX, EF,
EG, AR, and ER) but they are not essential for our purposes, and
we leave details to the reader [1, 9, 17]. Every subset of the set
{AX,AG,AF ,EU, AU} defines a certain fragment of QCTL, and we
consider such fragments.
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Let M be a subset of {AX, AG, AF, EU, AU}. For a set L of formulas,
define LM as a fragment of L where only modalities contained in M are
used. For example, QCTL[2 = QCL. In fact, in [15] it is proved that from
QCTL C L € QCTLIinCD, M # @, M # {AX}, and M # {AG} it
follows that L[M is not recursively enumerable. Hence, for such fragments
we may use the same argumentation as in the proof of the theorem. As a
result we obtain the following proposition.

PROPOSITION 1. Let M be a set of modalities allowing to express at least
one of the modalities AF, EU, AU or both AX and AG, let also S

be a calculus such that STM C QCTLIinCDJ[M:; then S is not Kripke
complete.

This proposition is stronger than the theorem. It shows that just one
temporal modality may be quite expressive. But note that the proposition
does not tell us anything about calculi in the language with AX only and
with AG only.

9.5 Effect of first-order conditions

To define Kripke semantics for £ we need the notion of path. Formally,
7 is a path in a frame (W, R, D) if 7 is a map from IN to W such that
w(n)Rm(n + 1), for every n € IN. Then, to define the truth relation for the
modalities, in fact, we use second-order quantifiers (on paths).

It is not the case for AX. It is possible to define the truth relation
for it using just R and first-order quantifiers (on states in W): AX is
true at a state s if ¢ is true at every state ¢ such that sRt. Together
with first-order definability of seriality and linearity it provides us with
embeddings of QCTL[{AX} and QCTLIinCD[{AX} into QCL, and
hence with a recursive axiomatization for each of them. Of course, it is
not so for any logic between QCTL[{AX } and QCTLIinCD[{A X} into
QCL but from the construction in [5] we obtain the following observation:
let a logic L be Kripke complete under some first-order definable class of
frames; then LI{AX} is recursively enumerable. Note that any recursively
enumerable logic has also a recursive axiomatization [10]. Note also that
we do not know whether the converse statement for the observation holds.

To define the truth relation for AG, in fact, we must define reflexive and
transitive closure of arbitrary accessibility relation R. It is not possible
to define it via R and equality if we use the first-order language only, but
note that if we deal with the modality AG without all others, then we may
‘forget’ about R and use its reflexive and transitive closure as a unique bi-
nary relation in a frame. In this case, we must just claim it to be reflexive
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and transitive. Then, we are again in the similar situation: there are em-
beddings of QCTL[{AG} and QCTLIinCD[{AG} into QCL, wherefore
these fragments (and some ones between them) are recursively axiomatiz-

able.

Of course, if we consider classes of frames allowing us to define other
modalities using first-order conditions only, then we obtain recursively ax-
iomatizable extensions of QCTL. For example, if a logic L is complete
under a class consisting of all frames (W, R, D) with the same finite W and
the same R on it then L is recursively axiomatizable.

9.6 Other classes

Our main conclusions and observations are based on the fact that any set
between QCTL and QCTLIinCD is not recursively enumerable. What
about logics outside the interval? In general, we do not know. But we show
some difficulties. To do this, consider an example.

Let QCTLfin be the logic complete under the class of all finite Kripke
frames. This logic is not included into QCTLIinCD but using argumen-
tation as in [22] we obtain that QCTLfin is not recursively enumerable
(and even QCTLfin[{AX} is not recursively enumerable). To prove the
theorem as above but with QCTLfin instead of QCTLIinCD we need an
algorithm embedding some non-enumerable problem into both QCTL and
QCTLfin, simultaneously. But we do not know whether such an algorithm
exists.

Let QCTLfinCD be the logic complete under the class of all finite
Kripke frames with constant domains. It is not recursively enumerable,
too. Moreover, it is possible to show that there is a translation ¢r such
that, for any closed classical first-order formula ¢,

¢ € QCTLfin <= tr(y) € QCTLfin
< tr(y) € QCTLfinCD,

and hence, any set of formulas between QCTLfin and QCTLfinCD is
not recursively enumerable (unfortunately, we do not know about any pub-
lications containing this fact, and cannot give a reference). It seems we
are successful and can extend the class of Kripke incomplete calculi. But
this is not so, again. Indeed, in this case, we just may propose that any
calculus such that QCTLfin C § C QCTLfinCD is not Kripke complete
but, clearly, there is no such calculus.
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9.7 Impossibility of ‘converse’ embeddings

In fact, our proof of the theorem is based on the fact that there exists an
embedding of QCL ;, into any theory between QCTL and QCTLIinCD.
The following natural question arises: is there an effective embedding of
QCTL or QCTLInCD into QCLy;,? The answer is ‘no’, and here we
give some argumentation.

Let us recall Post theorem, see [2]:

o a set X is decidable if and only if both X and X are recursively
enumerable,

where X is the complement of X. Clearly, for a logic L and a formula ¢,
we have that

e  is L-valid if and only if —¢ is not L-satisfiable;
e v is not L-satisfiable if and only if —p is L-valid.

Therefore, in terms of L-validity and L-satisfiability, Post theorem means
that

e L is decidable if and only if both L-validity problem and L-satisfiability
problem are recursively enumerable,

and hence, if L is undecidable then at least one of the problems is not
recursively enumerable.

The following statement is known as Church theorem, see [8, 13]: QCL
is not decidable. But because QCL is finitely axiomatizable, it is also
recursively enumerable. Therefore, using Post theorem, we may conclude
that

e QCL-validity problem is recursively enumerable;
o QCL-satisfiability problem is not recursively enumerable.

Note also that the set of all QCL y;,-satisfiable formulas is recursively enu-
merable: corresponding algorithm just tests for a given formula whether it
is true in models with one element, then whether it is true in models with
two elements, then whether it is true in models with three elements, and so
on; if the algorithm finds a model satisfying the formula then it stops with
the positive answer. Therefore, we may specify Trakhtenbrot theorem [6]:

e QCL;,-validity problem is not recursively enumerable;
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e QCL,;,-satisfiability problem is recursively enumerable.
Observe that for any closed classical first-order formula ¢,

v € QCL < ¢ e QCTL
< € QCTLIinCD.

Because QCL-satisfiability problem is not recursively enumerable, as a
corollary we obtain that L-satisfiability problem is not recursively enumer-
able, too, for any logic between QCTL and QCTLIinCD (of course, the
same is also true for any logic between QATL and QATLIinCD, etc.).

Let L be a logic between QCTL and QCTLILinCD. Suppose that there
exists an embedding of L into QCLy;,,, i.e., there exists an algorithm A
such that

p€L <= A(p) € QCLyy,,

for any formula ¢ in the language £. Then we immediately obtain that
QCLy;,-satisfiability problem is not recursively enumerable but it is not
so. The contradiction means that there is no such embedding. The same
argumentation allows us to conclude that there is no embedding of L into

QCL, too.
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