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The aim of this paper is to determine what properties the basic
functions of an arbitrary three-valued logical matrix must possess to
make the consequence relation determined by that matrix classical.
Let us begin with defining the necessary basic notions.

A logical matrix is a structure M =< V,F,D >, where V is
the set of truth-values, F is a set of functions on V called basic
functions, and D is a designated subset of V .

Let us consider an arbitrary propositional language L. A matrix
M is a matrix for L iff there is a one-to-one correspondence between
the elements of F and the connectives of L. If such a correspondence
exists we can define a valuation of an L-formula in M.

A valuation v of formula A in M is a homomorphism of L in
< V,F > such that

1. if A is a propositional variable, then v(A) ∈ V ;

2. if A1, A2, · · · , An are formulas, and ⊗ is an n-ary connective of
L, then v(⊗(A1, A2, · · · , An)) = fn(v(A1), v(A2), · · · , v(An)),
where fn is a function from F corresponding to ⊗.
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Subsequently, we can define the consequence relation in M in a
standard way.

Γ � (M)B iff there is no valuation v in M, such that v[Γ] ⊆ D(M)
(i.e. every formula from Γ assumes a truth-value designated in M),
and v(A) /∈ D(M).

Let us denote as � (M) a set of ordered pairs < Γ, B >, such
that Γ is a set of formulas, B is a formula, and Γ � (M)B.

We will say that the consequence relation in some three-
valued matrix N for L is classical iff there is a matrix
MC =< {1, 0}, F (MC), {0} > for L, where F (MC) is functionally
complete in P2, and � (MC) = � (N).

Because F (MC) is complete in P2, the following functions can be
presented as compositions of some elements of F (MC):

• f∧(x, y) = 1 iff x = 1 and y = 1;

• f¬(x) = 1 iff x = 0.

Actually, there can be more than one composition for f∧(x, y) or
f¬(x). But for our purposes it is only essential that we pick one
particular composition for each function. Then we can make the
following reasoning.

As there is a one-to-one correspondence between the functions of
F (MC) and the connectives of L, there is one particular L-formula
F∧ corresponding to f∧(x, y) and one particular L-formula F¬ corre-
sponding to f¬(x). Because N is a matrix for L and therefore there
is a one-to-one correspondence between the functions of F (N) and
the connectives of L, there is one particular composition g∧(x, y) of
the elements of F (N) corresponding to L-formula F∧ and one par-
ticular composition g¬(x) of the elements of F (N) corresponding to
L-formula F¬.

Let us use ∧ and ¬ as abbreviations for F∧ and F¬. If Form(L)
is the set of all formulas of L, then Form∧,¬(L) will be its subset
which consists exclusively of the formulas not including any con-
nectives but ∧ and ¬. We will denote the elements of Form∧,¬(L)
as L∧,¬-formulas. As Form∧,¬(L) is a subset of Form(L), the fol-
lowing is true.
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Observation 1. If for every set of L-formulas Γ and for every L-
formula B it is true that Γ � (N)B iff Γ � (MC)B, then for every
set of L∧,¬-formulas Γ∗ and for every L∧,¬-formula B∗ it is true that
Γ∗ � (N)B∗ iff Γ∗ � (MC)B∗.

On the basis of this Observation 1 we can propose the following
Lemma 1 concerning the properties of g∧(x, y) or g¬(x).

Lemma 1. If for every set of L-formulas Γ and for every L-formula
B it is true that Γ � (N)B iff Γ � (MC)B, then

• g∧(x, y) ∈ D(N) iff x ∈ D(N) and y ∈ D(N);

• g¬(x) ∈ D(N) iff x /∈ D(N).

Proof. We will begin with proving the first part. Let us sup-
pose that for some x

′
and y′ it is true that g∧(x

′
, y

′
) ∈ D(N) and

x
′
/∈ D(N). Let p1 and p2 be the propositional variables of L and v

′

be such a valuation in N that v
′
(p1) = x

′
and v

′
(p2) = y

′
. By defi-

nition of valuation, v
′
(p1∧p2) = g∧(x

′
, y

′
). So v

′
is such a valuation

in N that v
′
(p1 ∧ p2) ∈ D(N) and v

′
(p1) /∈ D(N). This entails, by

definition of �, that p1 ∧ p2 2 (N)p1. But p1 ∧ p2 � (MC)p1, and
p1∧p2, p1 are L∧,¬-formulas. So we come to the contradiction with
Observation 1. The reasoning for y′ is analogous.

Now let us suppose that for some x
′

and y′ it is true that
g∧(x

′
, y

′
) /∈ D(N) , and x

′ ∈ D(N) and y
′ ∈ D(N). Again, let v

′
be

such a valuation in N that v
′
(p1) = x

′
and v

′
(p2) = y

′
. Then v

′
is

such a valuation in N that v
′
(p1 ∧ p2) /∈ D(N), and v

′
(p1) ∈ D(N)

and v
′
(p2) ∈ D(N). From this, by definition of �, it follows that

p1, p2 2 (N)p1 ∧ p2. But p1, p2 � (MC)p1 ∧ p2, and either p1 ∧ p2,
p1 and p2 are L∧,¬-formulas. Therefore our assumption contradicts
Observation 1. The proof of the first statement is complete.

Let us prove the second statement of the lemma. First, we will
assume that there is some x

′
, such that g¬(x

′
) ∈ D(N) and x

′ ∈
D(N). As propositional variables are the elements of Form∧,¬(L),
due to Observation 1 and the fact that p1,¬p1 � (MC)p2, it is
necessary that p1,¬p1 � (N)p2. Now let us consider a valuation v

′
,

such that v
′
(p1) = x

′
, v

′
(p2) = y

′
and y

′
/∈ D(N). By definition of

valuation and by our assumption, v
′
(¬p1) ∈ D(N). According to
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the definition of �, it means that p1,¬p1 2 (N)p2, and we arrive to
the contradiction.

Now let us assume that there is some x
′
, such that g¬(x

′
) /∈ D(N)

and x
′
/∈ D(N). As p2 � (MC)¬(p1 ∧ ¬p1), it is necessary

that p2 � (N)¬(p1 ∧ ¬p1). Therefore, g¬(g∧(x
′
, g¬(x

′
))) ∈ D(N).

We have shown above that, if g¬(x) ∈ D(N), then x /∈ D(N).
So g∧(x

′
, g¬(x

′
)) /∈ D(N). At the same time g∧(x

′
, g¬(x

′
)) ̸= x

′
, as

g¬(x
′
) /∈ D(N), and we have already shown that g∧(x, y) ∈ D(N)

iff x ∈ D(N) and y ∈ D(N). This entails that there must exist a
value x

′′
, such that x

′′
/∈ D(N) and g¬(x

′′
) ∈ D(N). We have only

three elements in V (N), and there must be at least one element in
D(N). Otherwise, it would be impossible that � (MC) = � (N).
Consequently, either g¬(x

′
) = x

′′
or g¬(x

′
) = x

′
. If g¬(x

′
) = x

′′
,

then g¬(g¬(x
′
)) ∈ D(N). Let us consider a valuation v

′
, such that

v
′
(p1) = x

′
. We have that v

′
(p1) /∈ D(N) and v

′
(¬¬p1) ∈ D(N).

Thus, ¬¬p1 2 (N)p1. But that contradicts the assumption that
� (MC) = � (N) as ¬¬p1 � (MC)p1. So g¬(x

′
) = x

′
and, as

a consequence, g¬(g¬(x
′
)) = x

′
. Then g¬(g∧(x

′
, g¬(g¬(x

′
)))) ∈

D(N). Now let us consider the valuation v
′

as defined above.
We have that v

′
(¬p1) /∈ D(N) and v

′
(¬(p1 ∧ ¬¬p1)) ∈ D(N), so

¬(p1 ∧ ¬¬p1) 2 (N)¬p1. Again, we arrive at the contradiction, be-
cause ¬(p1 ∧ ¬¬p1) � (MC)¬p1. This concludes the proof of our
lemma.

2

Now we will define the necessary and sufficient properties that
N must possess if � (MC) = � (N). The method that we use is a
generalization of the idea presented in [1].

Definition 1. If v is a valuation in N, then v̄ is such a valuation
in MC that v̄(p) = 1 iff v(p) ∈ D(N) and v̄(p) = 0 iff v(p) /∈ D(N).

Definition 2. h1,0 is a homomorphism of V (N) on V (MC), such
that h1,0(x) = 1 iff x ∈ D(N) and h1,0(x) = 0 iff x /∈ D(N).

Theorem 1. � (MC) = � (N) iff for every v and every formula A
it is true that h1,0(v(A)) = v̄(A).

Proof. First we will prove that if � (MC) = � (N), then for every
v and every formula A it is true that h1,0(v(A)) = v̄(A). Let us
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suppose that � (MC) = � (N) and h1,0(v(A)) ̸= v̄(A) for some v
and A.

Due to the fact that {f∧(x, y), f¬(x)} is complete in P2, for every
L-formula A there is an L∧,¬-formula A∗ such that u(A) = u(A∗)
for every valuation u in MC . Consequently, A � (MC)A∗ and
A∗ � (MC)A. If � (MC) =� (N), it is also true that A � (N)A∗

and A∗ � (N)A. By definition of �, we have that in this case for
every valuation v in N it is true that v(A) ∈ D(N) iff v(A∗) ∈ D(N).
Therefore for every A and every v if h1,0(v(A)) ̸= v̄(A), then there is
an L∧,¬-formula A∗ such that h1,0(v(A∗)) ̸= v̄(A∗). Let us consider
such A∗ that it is L∧,¬-formula with the least amount of instances
of ∧ and ¬ for which h1,0(v(A∗)) ̸= v̄(A∗).

According to the definitions of v̄ and h1,0, v̄(p) = h1,0(v(p)). So
A∗ is either ¬B or C ∧D.

Let us assume that A∗ is ¬B. Either h1,0(v(¬B)) = 1 and
v̄(¬B) = 0 or h1,0(v(¬B)) = 0 and v̄(¬B) = 1. Let us assume
the former.

If h1,0(v(¬B)) = 1, then v(¬B) ∈ D(N). By the definition of
valuation v(¬B) = g¬v(B). By Lemma 1, if g¬(x) ∈ D(N), then
x /∈ D(N). So v(B) /∈ D(N). Then h1,0(v(B)) = 0. As B contains
less connectives then A∗, h1,0(v(B)) = v̄(B) and v̄(B) = 0. By
the definition of f¬, f¬(v̄(B)) = 1. Thus, by the definition of
valuation, v̄(¬B)) = 1. But that contradicts to our assumption that
v̄(¬B) = 0.

If we assume that h1,0(v(¬B)) = 0 and v̄(¬B) = 1, the reasoning
will be analogous. If h1,0(v(¬B)) = 0, then v(¬B) /∈ D(N), and, by
Lemma 1, v(B) ∈ D(N). From this we infer h1,0(v(B)) = v̄(B) = 1,
which entails that v̄(¬B) = 0. Again, we have a contradiction. So
A∗ is not ¬B.

Let us assume that A∗ is C ∧D. Either h1,0(v(C ∧D)) = 1 and
v̄(C ∧ D) = 0 or h1,0(v(C ∧ D)) = 0 and v̄(C ∧ D) = 1. Let us
assume the former.

By the definition of valuation, v(C ∧ D) = f∧(v(C), v(D)). By
Lemma 1, g∧(x, y) ∈ D(N) iff x ∈ D(N) and y ∈ D(N). Therefore,
both v(C) ∈ D(N) and v(D) ∈ D(N). As C and D contain less
connectives than A∗, h1,0(v(C)) = v̄(C) and h1,0(v(D)) = v̄(D).
Consequently, v̄(C) = 1 and v̄(D) = 1. By definition of f∧, if
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x = 1 and y = 1, then g∧(x, y) = 1. Therefore, f∧(v̄(C), v̄(D)) = 1,
and, by definition of valuation, v̄(C ∧ D) = 1. Then we have a
contradiction, as we have assumed that v̄(C ∧D) = 0.

Now let us assume that h1,0(v(C ∧ D)) = 0 and v̄(C ∧ D) = 1.
Then we have that v(C ∧ D) /∈ D(N). By definition of valuation,
(v(C ∧ D)) = g∧(v(C), v(D)). By Lemma 1, g∧(x, y) /∈ D(N) iff
either x /∈ D(N) or y /∈ D(N). So v(C) /∈ D(N) or v(D) /∈ D(N).
Let us assume that v(C) /∈ D(N). Then h1,0(v(C)) = 0. As C con-
tains less connectives than A∗, h1,0(v(C)) = v̄(C) and v̄(C) = 0.
By definition of f∧, if x = 0, then g∧(x, y) = 0. By the defini-
tion of valuation, it follows that v̄(C ∧ D) = 0. Again, we have a
contradiction, and A∗ is not C ∧D.

With the reasoning above we have shown that if � (MC) = � (N)
no A∗ exists, for which h1,0(v(A∗)) ̸= v̄(A∗). Consequently, no such
L-formula A exists either. Now we need to prove that if for every
v and every formula A it is true that h1,0(v(A)) = v̄(A), then
� (MC) = � (N).

Let us assume that h1,0(v(A)) = v̄(A) and � (MC) ̸= � (N).
Then there exist some set of formulas Γ and formula B, such that
either Γ � (MC) and Γ 2 (N), or Γ 2 (MC) and Γ � (N).

Let us assume that Γ � (MC) and Γ 2 (N). Then there is some
valuation w in N, such that w[Γ] ∈ D(N) and w(B) /∈ D(N). As for
every valuation v and every formula A it is true that h1,0(v(A)) =
v̄(A), it is also true that h1,0(w(Ai)) = w̄(Ai) for every element of
Γ, and h1,0(w(B)) = w̄(B). Therefore, w̄ is such a valuation in MC

that w̄[Γ] = 1 and w̄(B) = 0. That means, by definition of �, that
Γ 2 (MC)B, which contradicts our assumption.

Now we will assume that Γ 2 (MC) and Γ � (N). Then there is
some valuation u in MC , such that u[Γ] = 1 and u(B) = 0. Let us
construct the following valuation w in N. For every propositional
variable pi if u(pi) = 1, then w(pi) ∈ D(N), and if u(pi) = 0,
then w(pi) /∈ D(N). Obviously, for every formula A it is true that
w̄(A) = u(A). So we have that w̄[Γ] = 1 and w̄(B) = 0. As for every
valuation v and every formula A it is true that h1,0(v(A)) = v̄(A),
it is also true that h1,0(w(Ai)) = w̄(Ai) for every element of Γ, and
h1,0(w(B)) = w̄(B). By definition of h1,0, it means that w is such a
valuation in N that w[Γ] ∈ D(N) and w(B) /∈ D(N). By definition
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of �, we obtain that Γ 2 (N)B. Again, we have arrived to the
contradiction with our assumption. This concludes the proof of our
theorem. 2

Corollary 1. Consequence relation � (N) in a three-valued
matrix N for an arbitrary propositional language L is clas-
sical iff for every basic operation gni (x1, x2, . . . , xn) of N
and the corresponding basic operation of MC fni (y1, y2, . . . , yn)
it is true that gni (x1, x2, . . . , xn) ∈ D(N) if and only if
fni (h1,0(x1), h1,0(x2), . . . , h1,0(xn)) = 1.

References

[1] Devjatkin L.Ju., Karpenko A.S., Popov V.M. Trehznachnye harak-
teristicheskie matricy klassicheskoj propozicional’noj logiki // Trudy
nauchno-issledovatel’skogo seminara Logicheskogo centra Instituta
filosofii RAN. 2007. № 18. P.50–62


