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abstract. For an arbitrary fixed element β in {1, 2, 3, . . . ω}
both a sequent calculus and a natural deduction calculus which
axiomatise simple paracomplete logic I2,β are built. Additionally,
a valuation semantic which is adequate to logic I2,β is constructed.
For an arbitrary fixed element γ in {1, 2, 3, . . . } a cortege semantic
which is adequate to logic I2,γ is described. A number of results
obtainable with the axiomatisations and semantics in question are
formulated.
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We study logics I2,1, I2,2, I2,3, . . . I2,ω presented in [8]. These logics
are paracomplete counterparts of paraconsistent logics I1,1, I1,2, I1,3,
. . . I1,ω from [7]. In the paper, (a) simple paracomplete logics I2,1,
I2,2, I2,3, . . . I2,ω are defined (see [8]); these logics form (in the order
indicated above) a strictly decreasing (in terms of the set-theoretic
inclusion) sequence of logics, (b) for any j in {0, 1, 2, 3, . . . ω} both
a sequent calculus GI2,j (see [10]) and a natural deduction calcu-
lus NI2,j which axiomatise logic I2,j are formulated, (с) for any j
in {1, 2, 3, . . . ω}, we propose a valuation semantics for logic I2,j
(see [9]), (d) for any j in {1, 2, 3, . . . }, we propose a cortege seman-
tics for logic I2,j (see [9]). Below there are some results obtained
with the semantics and calculi in question.

The language L of each logic in the paper is a stan-
dard propositional language with the following alphabet: {&,∨,
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⊃,¬, (, ), p1, p2, p3, . . . }. As it is expected, &, ∨, ⊃ are binary logi-
cal connectives in L, ¬ is a unary logical connective in L, brackets
(, ) are technical symbols in L and p1, p2, p3, . . . are propositional
variables in L. A definition of L-formula is as usual. Below, we say
‘formula’ instead of ‘L-formula’ only and adopt the convention on
omitting brackets as in [4]. A formula is said to be quasi-elemental
iff no logical connective in L other than ¬ occurs in it. A length
of a formula A is, traditionally, said to be the number of all occur-
rences of the logical connectives in L in A. We denote the rule of
modus ponens in L by MP and the rule of substitution of a formula
into a formula instead of a propositional variable in L by Sub. A
logic is said to be a non-empty set of formulas closed under MP and
Sub. A theory for logic L is said to be a set of formulas including
logic L and closed under MP. It is understood that the set of all
formulas is both a logic and a theory for any logic. The set of all
formulas is said to be a trivial theory. A complete theory for logic
L is said to be a theory T for logic L such that, for some formula A,
A ∈ T or ¬A ∈ T. A paracomplete theory for logic L is said to be a
theory T for logic L such that T is not a complete theory and any
complete theory for logic L, which includes T, is a trivial theory. A
paracomplete logic is said to be a logic L such that there exists a
paracomplete theory for logic L. Simple paracomplete logic is said
to be a paracomplete logic L such that for any paracomplete theory
T for logic L holds true: there exists a quasi-elemental formula A
such that neither A, nor ¬A belongs to T.

Let us agree that anywhere in the paper: α is an arbitrary element
in {0, 1, 2, 3, . . . ω}, β is an arbitrary element in {1, 2, 3, . . . ω}, γ is
an arbitrary element in {1, 2, 3, . . . }. We define calculus HI2,α. This
calculus is Hilbert-type calculi, the language of HI2,α is L. HI2,α has
MP as the only rule of inference. The notion of a derivation in HI2,α
(of a proof in HI2,α, in particular) is defined as usual; and for HI2,α,
both notion of a formula derivable from the set of formulas in this
calculus and a notion of a formula provable in this calculus are
defined as usual. Now we only need to define the set of axioms of
HI2,α.

A formula belongs to the set of axioms of calculus HI2,α iff it is
one of the following forms (hereafter, A, B, C denote formulas):
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(I) (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C)), (II) A ⊃ (A ∨ B), (III)
B ⊃ (A ∨ B), (IV) (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C)),
(V) (A&B) ⊃ A, (VI) (A&B) ⊃ B, (VII) (C ⊃ A) ⊃ ((C ⊃ B) ⊃
(C ⊃ (A&B))), (VIII) (A ⊃ (B ⊃ C)) ⊃ ((A&B) ⊃ C), (IX)
((A&B) ⊃ C) ⊃ (A ⊃ (B ⊃ C)), (X) ((A ⊃ B) ⊃ A) ⊃ A, (XI, α)
(E ⊃ ¬(B ⊃ B)) ⊃ ¬E, where E is formula which is not a quasi-
elemental formula of a length less than α, (XII) ¬A ⊃ (A ⊃ B).

Let us agree that, for any j in {0, 1, 2, 3, . . . ω}, I2,j is the set of
formulas provable in HI2,j .

The following theorems 1 and 2 are shown.

Theorem 1. Sets I2,0, I2,1, I2,2, I2,3, . . . I2,ω are logics, and, for
any k and l in {0, 1, 2, 3, . . . ω}, if k < l, then I2,l ⊆ I2,k.

Theorem 2. Logic I2,0 is the set of the classical tautologies in L.

Let us establish connections between logics I2,1, I2,2, I2,3, . . . I2,ω
and logic I2,0 (that is, the classical propositional logic in L).

Let φ be a mapping of the set of all formulas into itself satisfying
the following conditions: (1) φ(p) is not a quasi-elemental formula,
for any propositional variable p in L, (2) for any propositional vari-
able p in L, formulas p ⊃ φ(p) and φ(p) ⊃ p belong to logic I2,0,
(3) φ(B ◦C) = φ(B) ◦φ(C), for any formulas B, C and for any bi-
nary logical connective ◦ in L, (4) φ(¬B) = ¬φ(B), for any formula
B.

Following these conditions, theorem 3 is shown.

Theorem 3. For any j in {1, 2, 3, . . . ω} and for any formula A:
A ∈ I2,0 iff φ(A) ∈ I2,j.

Let now ψ be such a mapping the set of all formulas into it-
self satisfying the following conditions: (1) ψ(p) = p, for any
propositional variable p in L, (2) ψ(B ◦ C) = ψ(B) ◦ ψ(C), for
any formulas B, C and for any binary logical connective ◦ in L,
(3) ψ(¬B) = ψ(B) ⊃ ¬(p1 ⊃ p1), for any formula B.

Following these conditions, theorem 4 is shown.

Theorem 4. For any j in {1, 2, 3, . . . ω} and for any formula A:
A ∈ I2,0 iff ψ(A) ∈ I2,j.

Let us now show a method to build up a sequent calculus GI2,β
which axiomatises logic I2,β . Calculus GI2,β (see [10]) is a Gentzen-
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type sequent calculus. Sequents are of the form Γ → ∆ (hereafter,
Γ, ∆, Σ and Θ denote finite sequences of formulas). The set of basic
sequents of GI2,β is the set of all sequents of the form A→ A. The
only rules of GI2,β are the rules R1-R15, R16(β), R17 listed below.

Γ, A,B,∆ → Θ
R1,

Γ, B,A,∆ → Θ

Γ → ∆, A,B,Θ
R2,

Γ → ∆, B,A,Θ

A,A,Γ → Θ
R3,

A,Γ → Θ

Γ → Θ, A,A
R4,

Γ → Θ, A

Γ → Θ R5,
A,Γ → Θ

Γ → Θ R6,
Γ → Θ, A

Γ → ∆, A B,Σ → Θ
R7,

A ⊃ B,Γ,Σ → ∆,Θ

A,Γ → Θ, B
R8,

Γ → Θ, A ⊃ B

A,Γ → Θ
R9,

A&B,Γ → Θ

A,Γ → Θ
R10,

B&A,Γ → Θ

Γ → Θ, A Γ → Θ, B
R11,

Γ → Θ, A&B

Γ → Θ, A
R12,

Γ → Θ, A ∨B

Γ → Θ, A
R13,

Γ → Θ, B ∨A

A,Γ → Θ B,Γ → Θ
R14,

A ∨B,Γ → Θ

Γ → Θ, A
R15,¬A,Γ → Θ

E,Γ → Θ
R16(β),

Γ → Θ,¬E
where E is a formula which is not a quasi-elemental
formula of a length less than β,

Γ → ∆, A A,Σ → Θ
R17 (cut rule)

Γ,Σ → ∆,Θ

A derivation in calculus GI2,β is defined in a standard sequent
calculus fashion. The definition of a sequent provable in GI2,β is as
usual. The cut-elimination theorem is shown (by Gentzen’s method
presented in [3]) to be valid in GI2,β .

The following theorem 5 is shown.

Theorem 5. For any j in {1, 2, 3, . . . ω} and for any formula A:
A ∈ I2,j iff a sequent → A is provable in GI2,j.

Let us now show a method to build up a Fitch-style natural de-
duction calculus NI2,β which axiomatises logic I2,β .

The set of NI2,β-rules is as follows, where [A]C denotes a deriva-
tion of a formula C from a formula A.

C&C1
&el1

C

C&C1
&el2

C1

C,C1
&in

C&C1
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C ∨ C1, [C]C2 [C1]C2 ∨el
C2

C ∨in1
C ∨ C1

C1 ∨in2
C ∨ C1

C ⊃ C1, C ⊃el
C1

[C]C1 ⊃in
C ⊃ C1

[A ⊃ B]A ⊃p
A

[E] ¬(C ⊃ C) ¬in1(β),
¬E

where E is a formula which is not a quasi-
elemental formula of a length less than β.

¬C1, C1 ¬in2
C

A derivation in NI2,β is defined in a standard natural deduction
calculus fashion.

The following theorem 6 is shown.

Theorem 6. For any j in {1, 2, 3, . . . ω} and for any formula A :
A ∈ I2,j iff A is provable in NI2,j.

The proof search procedures which were proposed to the classical
and a variety of non-classical logics are applicable [1, 2].

Let us construct I2,β-valuation semantics for I2,β . By Qβ we de-
note the set of all quasi-elemental formulas of a length less or equal
to β. By I2,β-valuation we mean any mapping v set Qβ into the set
{0, 1} such that, for any quasi-elemental formula e of a length less
than β, if v(e) = 1, then v(¬e) = 0. Let Form denote the set of all
formulas and let Val2,β denote the set of all I2,β-valuations. It can
be shown there exists a unique mapping (denoted by ξ2,β ) satisfying
the following six conditions: (1) ξ2,β is a mapping a Cartesian prod-
uct Form × Val2,β into the set {1, 0}, (2) for any quasi-elemental
formula Y in Qβ and any I2,β-valuation v: ξ2,β(Y, v) = v(Y ), (3) for
any formulas A, B and any I2,β-valuation v: ξ2,β(A&B, v) = 1 iff
ξ2,β(A) = 1 and ξ2,β(B) = 1, (4) for any formulas A, B and any I2,β-
valuation v: ξ2,β(A∨B, v) = 1 iff ξ2,β(A) = 1 or ξ2,β(B) = 1, (5) for
any formulas A, B and any I2,β-valuation v: ξ2,β(A ⊃ B, v) = 1 iff
ξ2,β(A) = 0 or ξ2,β(B) = 1, (6) for any formula A which is not a
quasi-elemental formula of a length less than β, and for any I2,β-
valuation v: ξ2,β(¬A, v) = 1 iff ξ2,β(A, v) = 0. A formula A is said
to be I2,β-valid iff for any I2,β-valuation v, ξ2,β(A, v) = 1.

The following theorems 7 and 8 are shown.

Theorem 7. For any j in {1, 2, 3, . . . ω}, for any formula A, for
any set Γ of formulas: formula A is derivable from Γ in HI2,j iff for
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any I2,j-valuation v, if for any formula B in Γ, ξ2,j(B, v) = 1, then
ξ2,j(A, v) = 1.

Theorem 8. For any j in {1, 2, 3, . . . ω} and for any formula A,
A ∈ I2,j iff formula A is I2,j-valid.

It should be noted that the proposed I2,β-valuation semantics
is consistent to the requirements, which, in our point of view,
N.A. Vasiliev considers to be necessary in [11]: (1) no proposition
cannot be true and false at once, (2) in general case, a value of the
proposition that is a negation of a proposition P , is not determined
by the value of P .

Let us construct I2,γ-cortege semantics for I2,γ . By I2,γ-cortege
we mean an ordered γ + 1-tuplet of elements of the set {1, 0} such
that for any two neighboring members of this ordered γ + 1-tuplet,
at least one of them is 0. By a designated I2,γ-cortege we mean
I2,γ-cortege, where the first member is 1. By S2,γ we denote the set
of all I2,γ-corteges and by D2,γ we denote the set of all designated
I2,γ-corteges. By a normal I2,γ-cortege we mean I2,γ-cortege such
that any two neighboring members of this I2,γ-cortege are different.
By a single I2,γ-cortege we mean a normal I2,γ-cortege such that the
first member of it is 1. By a zero I2,γ-cortege we mean a normal
I2,γ-cortege such that the first member of it is 0.

It is clear that there exists a unique single I2,γ-cortege (denoted
by 1γ) and there exists a unique zero I2,γ-cortege (denoted by 0γ).
It can be shown that there exists a unique binary operation on S2,γ

(denoted by &2,γ) satisfying the following condition, for any X, Y in
S2,γ : if the first member of I2,γ-cortege X is 1 and the first member
of I2,γ-cortege Y is 1 then X&2,γY is 1γ ; otherwise, X&2,γY is 0γ .
It can be shown that there exists a unique binary operation on S2,γ

(denoted by ∨2,γ) satisfying the following condition, for any X and
Y in S2,γ : if the first member of I2,γ-cortege X is 1 or the first mem-
ber of I2,γ-cortege Y is 1 then X ∨2,γ Y is 1γ ; otherwise, X ∨2,γ Y
is 0γ . It can be shown that there exists a unique binary operation
on S2,γ (denoted by ⊃2,γ) satisfying the following condition, for any
X and Y in S2,γ : if the first member of I2,γ-cortege X is 0 or the
first member of I2,γ-cortege Y is 1 then X ⊃2,γ Y is 1γ ; otherwise,
X ⊃2,γ Y is 0γ . It can be shown that there exists a unique unary
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operation on S2,γ (denoted by ¬2,γ) satisfying the following con-
dition, for any I2,γ-cortege < x1, x2, . . . , xγ , xγ+1 >: if xγ+1 is 1
then ¬2,γ(< x1, x2, . . . , xγ , xγ+1 >) =< x2, . . . , xγ , xγ+1, 0 >
and if, if xγ+1 is 0, then ¬2,γ(< x1, x2, . . . , xγ , xγ+1 >) =
< x2, . . . , xγ , xγ+1, 1 >.

It is clear that < S2,γ ,D2,γ ,&2,γ ,∨2,γ ,⊃2,γ ,¬2,γ > is a logi-
cal matrix. This logical matrix (denoted by M2,γ) is said to be
I2,γ-matrix. M2,γ-valuation is said to be a mapping the set of
all propositional variables in L into S2,γ . The set of all M2,γ-
valuations is denoted by ValM2,γ . It can be shown that there ex-
ists a unique mapping (denoted by ξM2,γ) satisfying the following
conditions: (1) ξM2,γ is a mapping a Cartesian product Form x
ValM2,γ into the set S2,γ , (2) for any propositional variable p in
L and for any M2,γ-valuation w, ξM2,γ(p, w) = w(p), (3) for any
formulas A, B and for any M2,γ-valuation w, ξM2,γ(A&B,w) =
ξM2,γ(A,w)&2,γξM2,γ(B,w), (4) for any formulas A, B and for any
M2,γ-valuation w, ξM2,γ(A∨B,w) = ξM2,γ(A,w)∨2,γ ξM2,γ(B,w),
(5) for any formulas A, B and for any M2,γ-valuation w, ξM2,γ(A ⊃
B,w) = ξM2,γ(A,w) ⊃2,γ ξM2,γ(B,w), (6) for any formula A and
for any M2,γ-valuation w, ξM2,γ(¬A,w) = ¬2,γξM2,γ(A,w).

A formula A is said to be M2,γ-valid iff for any M2,γ-valuation w,
ξM2,γ(A,w) ∈ D2,γ .

The following theorems 9–11 are shown.

Theorem 9. For any j in {1, 2, 3, . . . }, for any formula A and for
any set Γ of formulas, formula A is derivable from Γ in HI2,j iff for
any M2,j-valuation w, if for any formula B from Γ, ξM2,j(B,w) ∈
D1,j then ξM2,j(A,w) ∈ D2,j.

Theorem 10. For any j in {1, 2, 3, . . . } and for any formula A,
A ∈ I2,j iff A is M2,j-valid.

Theorem 11. For any j in {1, 2, 3, . . . } and for any for-
mula A, A is M2,j-valid iff for any M2,j-valuation w,
ξM1,j(A,w) ∈ 1j.

The following theorems 12–19 are shown with the help of the
axiomatisations and semantics presented in the paper.
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Theorem 12. Logics I2,1, I2,2, I2,3, . . . I2,ω are simple paracomplete
logics.

Theorem 13. For any j and k in {1, 2, 3, . . . ω}, if j ̸= k then
I2,j ̸= I2,k.

Theorem 14. For any j in {1, 2, 3, . . . ω}, the positive fragment of
logic I2,j is equal to the positive fragment of logic I2,0.

Theorem 15. For any j in {1, 2, 3, . . . ω}, logic I2,j is decidable.

Theorem 16. For any j in {1, 2, 3, . . . }, logic I2,j is finitely-valued.

Theorem 17. Logic I2,ω is not finitely-valued.

Theorem 18. Logic I2,ω is equal to the intersection of logics I2,1,
I2,2, I2,3, . . .

Theorem 19. There is a continuum of logics which include I2,ω
and are included in I2,1.
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