Syntax and semantics of simple paracomplete logics¹

VLADIMIR M. POPOV, VASILIY O. SHANGIN

ABSTRACT. For an arbitrary fixed element β in $\{1,2,3,\ldots\omega\}$ both a sequent calculus and a natural deduction calculus which axiomatise simple paracomplete logic $I_{2,\beta}$ are built. Additionally, a valuation semantic which is adequate to logic $I_{2,\beta}$ is constructed. For an arbitrary fixed element γ in $\{1,2,3,\ldots\}$ a cortege semantic which is adequate to logic $I_{2,\gamma}$ is described. A number of results obtainable with the axiomatisations and semantics in question are formulated.

Keywords: paracomplete logic, paraconsistent logic, cortege semantics, valuation semantics, sequent calculus, natural deduction calculus

We study logics $I_{2,1}$, $I_{2,2}$, $I_{2,3}$, ... $I_{2,\omega}$ presented in [8]. These logics are paracomplete counterparts of paraconsistent logics $I_{1,1}$, $I_{1,2}$, $I_{1,3}$, ... $I_{1,\omega}$ from [7]. In the paper, (a) simple paracomplete logics $I_{2,1}$, $I_{2,2}$, $I_{2,3}$, ... $I_{2,\omega}$ are defined (see [8]); these logics form (in the order indicated above) a strictly decreasing (in terms of the set-theoretic inclusion) sequence of logics, (b) for any j in $\{0,1,2,3,\ldots\omega\}$ both a sequent calculus $GI_{2,j}$ (see [10]) and a natural deduction calculus $NI_{2,j}$ which axiomatise logic $I_{2,j}$ are formulated, (c) for any j in $\{1,2,3,\ldots\omega\}$, we propose a valuation semantics for logic $I_{2,j}$ (see [9]), (d) for any j in $\{1,2,3,\ldots\}$, we propose a cortege semantics for logic $I_{2,j}$ (see [9]). Below there are some results obtained with the semantics and calculi in question.

The language L of each logic in the paper is a standard propositional language with the following alphabet: $\{\&, \lor,$

 $^{^1{\}rm The}$ paper is supported by Russian Foundation for Humanities, project $N\!\!\!^\circ 10\text{-}03\text{-}00570a$ and project $N\!\!\!^\circ 13\text{-}03\text{-}00088a$ (both authors).

 \supset , \neg , (,), p_1, p_2, p_3, \dots }. As it is expected, &, \lor , \supset are binary logical connectives in L, \neg is a unary logical connective in L, brackets (,) are technical symbols in L and p_1, p_2, p_3, \ldots are propositional variables in L. A definition of L-formula is as usual. Below, we say 'formula' instead of 'L-formula' only and adopt the convention on omitting brackets as in [4]. A formula is said to be quasi-elemental iff no logical connective in L other than \neg occurs in it. A length of a formula A is, traditionally, said to be the number of all occurrences of the logical connectives in L in A. We denote the rule of modus ponens in L by MP and the rule of substitution of a formula into a formula instead of a propositional variable in L by Sub. A logic is said to be a non-empty set of formulas closed under MP and Sub. A theory for logic L is said to be a set of formulas including logic L and closed under MP. It is understood that the set of all formulas is both a logic and a theory for any logic. The set of all formulas is said to be a trivial theory. A complete theory for logic **L** is said to be a theory T for logic **L** such that, for some formula A, $A \in T$ or $\neg A \in T$. A paracomplete theory for logic L is said to be a theory T for logic L such that T is not a complete theory and any complete theory for logic L, which includes T, is a trivial theory. A paracomplete logic is said to be a logic L such that there exists a paracomplete theory for logic L. Simple paracomplete logic is said to be a paracomplete logic L such that for any paracomplete theory T for logic L holds true: there exists a quasi-elemental formula Asuch that neither A, nor $\neg A$ belongs to T.

Let us agree that anywhere in the paper: α is an arbitrary element in $\{0,1,2,3,\ldots\omega\}$, β is an arbitrary element in $\{1,2,3,\ldots\omega\}$, γ is an arbitrary element in $\{1,2,3,\ldots\}$. We define calculus $\mathrm{HI}_{2,\alpha}$. This calculus is Hilbert-type calculi, the language of $\mathrm{HI}_{2,\alpha}$ is L. $\mathrm{HI}_{2,\alpha}$ has MP as the only rule of inference. The notion of a derivation in $\mathrm{HI}_{2,\alpha}$ (of a proof in $\mathrm{HI}_{2,\alpha}$, in particular) is defined as usual; and for $\mathrm{HI}_{2,\alpha}$, both notion of a formula derivable from the set of formulas in this calculus and a notion of a formula provable in this calculus are defined as usual. Now we only need to define the set of axioms of $\mathrm{HI}_{2,\alpha}$.

A formula belongs to the set of axioms of calculus $\text{HI}_{2,\alpha}$ iff it is one of the following forms (hereafter, $A,\,B,\,C$ denote formulas):

(I) $(A \supset B) \supset ((B \supset C) \supset (A \supset C))$, (II) $A \supset (A \lor B)$, (III) $B \supset (A \lor B)$, (IV) $(A \supset C) \supset ((B \supset C) \supset ((A \lor B) \supset C))$, (V) $(A\&B) \supset A$, (VI) $(A\&B) \supset B$, (VII) $(C \supset A) \supset ((C \supset B) \supset (C \supset (A\&B)))$, (VIII) $(A \supset (B \supset C)) \supset ((A\&B) \supset C)$, (IX) $((A\&B) \supset C) \supset (A \supset (B \supset C))$, (X) $((A \supset B) \supset A) \supset A$, (XI, α) $(E \supset \neg(B \supset B)) \supset \neg E$, where E is formula which is not a quasi-elemental formula of a length less than α , (XII) $\neg A \supset (A \supset B)$.

Let us agree that, for any j in $\{0, 1, 2, 3, \dots \omega\}$, $I_{2,j}$ is the set of formulas provable in $HI_{2,j}$.

The following theorems 1 and 2 are shown.

THEOREM 1. Sets $I_{2,0}$, $I_{2,1}$, $I_{2,2}$, $I_{2,3}$, ... $I_{2,\omega}$ are logics, and, for any k and l in $\{0, 1, 2, 3, ... \omega\}$, if k < l, then $I_{2,l} \subseteq I_{2,k}$.

Theorem 2. Logic $I_{2,0}$ is the set of the classical tautologies in L.

Let us establish connections between logics $I_{2,1}$, $I_{2,2}$, $I_{2,3}$, ... $I_{2,\omega}$ and logic $I_{2,0}$ (that is, the classical propositional logic in L).

Let φ be a mapping of the set of all formulas into itself satisfying the following conditions: (1) $\varphi(p)$ is not a quasi-elemental formula, for any propositional variable p in L, (2) for any propositional variable p in L, formulas $p \supset \varphi(p)$ and $\varphi(p) \supset p$ belong to logic $I_{2,0}$, (3) $\varphi(B \circ C) = \varphi(B) \circ \varphi(C)$, for any formulas B, C and for any binary logical connective \circ in L, (4) $\varphi(\neg B) = \neg \varphi(B)$, for any formula B.

Following these conditions, theorem 3 is shown.

THEOREM 3. For any j in $\{1, 2, 3, ... \omega\}$ and for any formula A: $A \in I_{2,0}$ iff $\varphi(A) \in I_{2,j}$.

Let now ψ be such a mapping the set of all formulas into itself satisfying the following conditions: (1) $\psi(p) = p$, for any propositional variable p in L, (2) $\psi(B \circ C) = \psi(B) \circ \psi(C)$, for any formulas B, C and for any binary logical connective \circ in L, (3) $\psi(\neg B) = \psi(B) \supset \neg(p_1 \supset p_1)$, for any formula B.

Following these conditions, theorem 4 is shown.

THEOREM 4. For any j in $\{1, 2, 3, ... \omega\}$ and for any formula A: $A \in I_{2,0}$ iff $\psi(A) \in I_{2,j}$.

Let us now show a method to build up a sequent calculus $GI_{2,\beta}$ which axiomatises logic $I_{2,\beta}$. Calculus $GI_{2,\beta}$ (see [10]) is a Gentzen-

type sequent calculus. Sequents are of the form $\Gamma \to \Delta$ (hereafter, Γ , Δ , Σ and Θ denote finite sequences of formulas). The set of basic sequents of $\mathrm{GI}_{2,\beta}$ is the set of all sequents of the form $A \to A$. The only rules of $\mathrm{GI}_{2,\beta}$ are the rules R1-R15, R16(β), R17 listed below.

$$\frac{\Gamma, A, B, \Delta \to \Theta}{\Gamma, B, A, \Delta \to \Theta} \text{ R1, } \frac{\Gamma \to \Delta, A, B, \Theta}{\Gamma \to \Delta, B, A, \Theta} \text{ R2, } \frac{A, A, \Gamma \to \Theta}{A, \Gamma \to \Theta} \text{ R3,}$$

$$\frac{\Gamma \to \Theta, A, A}{\Gamma \to \Theta, A} \text{ R4, } \frac{\Gamma \to \Theta}{A, \Gamma \to \Theta} \text{ R5, } \frac{\Gamma \to \Theta}{\Gamma \to \Theta, A} \text{ R6,}$$

$$\frac{\Gamma \to \Delta, A}{A \supset B, \Gamma, \Sigma \to \Delta, \Theta} \text{ R7, } \frac{A, \Gamma \to \Theta, B}{\Gamma \to \Theta, A \supset B} \text{ R8,}$$

$$\frac{A, \Gamma \to \Theta}{A \& B, \Gamma \to \Theta} \text{ R9, } \frac{A, \Gamma \to \Theta}{B \& A, \Gamma \to \Theta} \text{ R10, } \frac{\Gamma \to \Theta, A}{\Gamma \to \Theta, A \& B} \text{ R11,}$$

$$\frac{\Gamma \to \Theta, A}{\Gamma \to \Theta, A \lor B} \text{ R12, } \frac{\Gamma \to \Theta, A}{\Gamma \to \Theta, B \lor A} \text{ R13, } \frac{A, \Gamma \to \Theta}{A \lor B, \Gamma \to \Theta} \text{ R14,}$$

$$\frac{\Gamma \to \Theta, A}{\neg A, \Gamma \to \Theta} \text{ R15,}$$

$$\frac{E, \Gamma \to \Theta}{\Gamma \to \Theta, \neg E} \text{ R16}(\beta), \text{ where } E \text{ is a formula which is not a quasi-elemental formula of a length less than } \beta,$$

$$\frac{\Gamma \to \Delta, A}{\Gamma \to \Phi, \neg E} \text{ R16}(\beta), \text{ where } E \text{ is a formula which is not a quasi-elemental formula of a length less than } \beta,$$

A derivation in calculus $GI_{2,\beta}$ is defined in a standard sequent calculus fashion. The definition of a sequent provable in $GI_{2,\beta}$ is as usual. The cut-elimination theorem is shown (by Gentzen's method presented in [3]) to be valid in $GI_{2,\beta}$.

The following theorem 5 is shown.

THEOREM 5. For any j in $\{1, 2, 3, ... \omega\}$ and for any formula A: $A \in I_{2,j}$ iff a sequent $\to A$ is provable in $GI_{2,j}$.

Let us now show a method to build up a Fitch-style natural deduction calculus $NI_{2,\beta}$ which axiomatises logic $I_{2,\beta}$.

The set of $NI_{2,\beta}$ -rules is as follows, where [A]C denotes a derivation of a formula C from a formula A.

$$\frac{C\&C_1}{C} \&_{el1} \qquad \qquad \frac{C\&C_1}{C_1} \&_{el2} \qquad \frac{C,C_1}{C\&C_1} \&_{in}$$

A derivation in $NI_{2,\beta}$ is defined in a standard natural deduction calculus fashion.

The following theorem 6 is shown.

THEOREM 6. For any j in $\{1, 2, 3, ... \omega\}$ and for any formula $A : A \in I_{2,j}$ iff A is provable in $NI_{2,j}$.

The proof search procedures which were proposed to the classical and a variety of non-classical logics are applicable [1, 2].

Let us construct $I_{2,\beta}$ -valuation semantics for $I_{2,\beta}$. By Q_{β} we denote the set of all quasi-elemental formulas of a length less or equal to β . By $I_{2,\beta}$ -valuation we mean any mapping v set Q_{β} into the set $\{0, 1\}$ such that, for any quasi-elemental formula e of a length less than β , if v(e) = 1, then $v(\neg e) = 0$. Let Form denote the set of all formulas and let $\mathrm{Val}_{2,\beta}$ denote the set of all $\mathrm{I}_{2,\beta}\text{-valuations}.$ It can be shown there exists a unique mapping (denoted by $\xi_{2,\beta}$) satisfying the following six conditions: (1) $\xi_{2,\beta}$ is a mapping a Cartesian product Form \times Val_{2, β} into the set $\{1, 0\}$, $\{2\}$ for any quasi-elemental formula Y in Q_{β} and any $I_{2,\beta}$ -valuation $v: \xi_{2,\beta}(Y,v) = v(Y), (3)$ for any formulas A, B and any $I_{2,\beta}$ -valuation $v: \xi_{2,\beta}(A\&B,v) = 1$ iff $\xi_{2,\beta}(A) = 1$ and $\xi_{2,\beta}(B) = 1$, (4) for any formulas A, B and any $I_{2,\beta}$ valuation $v: \xi_{2,\beta}(A \vee B, v) = 1 \text{ iff } \xi_{2,\beta}(A) = 1 \text{ or } \xi_{2,\beta}(B) = 1, (5) \text{ for }$ any formulas A, B and any $I_{2,\beta}$ -valuation $v: \xi_{2,\beta}(A \supset B, v) = 1$ iff $\xi_{2,\beta}(A) = 0$ or $\xi_{2,\beta}(B) = 1$, (6) for any formula A which is not a quasi-elemental formula of a length less than β , and for any $I_{2,\beta}$ valuation $v: \xi_{2,\beta}(\neg A, v) = 1$ iff $\xi_{2,\beta}(A, v) = 0$. A formula A is said to be $I_{2,\beta}$ -valid iff for any $I_{2,\beta}$ -valuation $v, \xi_{2,\beta}(A,v) = 1$.

The following theorems 7 and 8 are shown.

THEOREM 7. For any j in $\{1, 2, 3, ... \omega\}$, for any formula A, for any set Γ of formulas: formula A is derivable from Γ in $HI_{2,j}$ iff for

any $I_{2,j}$ -valuation v, if for any formula B in Γ , $\xi_{2,j}(B,v)=1$, then $\xi_{2,j}(A,v)=1$.

THEOREM 8. For any j in $\{1, 2, 3, ... \omega\}$ and for any formula A, $A \in I_{2,j}$ iff formula A is $I_{2,j}$ -valid.

It should be noted that the proposed $I_{2,\beta}$ -valuation semantics is consistent to the requirements, which, in our point of view, N.A. Vasiliev considers to be necessary in [11]: (1) no proposition cannot be true and false at once, (2) in general case, a value of the proposition that is a negation of a proposition P, is not determined by the value of P.

Let us construct $I_{2,\gamma}$ -cortege semantics for $I_{2,\gamma}$. By $I_{2,\gamma}$ -cortege we mean an ordered $\gamma+1$ -tuplet of elements of the set $\{1,0\}$ such that for any two neighboring members of this ordered $\gamma+1$ -tuplet, at least one of them is 0. By a designated $I_{2,\gamma}$ -cortege we mean $I_{2,\gamma}$ -cortege, where the first member is 1. By $S_{2,\gamma}$ we denote the set of all $I_{2,\gamma}$ -corteges and by $D_{2,\gamma}$ we denote the set of all designated $I_{2,\gamma}$ -corteges. By a normal $I_{2,\gamma}$ -cortege we mean $I_{2,\gamma}$ -cortege such that any two neighboring members of this $I_{2,\gamma}$ -cortege are different. By a single $I_{2,\gamma}$ -cortege we mean a normal $I_{2,\gamma}$ -cortege such that the first member of it is 1. By a zero $I_{2,\gamma}$ -cortege we mean a normal $I_{2,\gamma}$ -cortege such that the first member of it is 0.

It is clear that there exists a unique single $I_{2,\gamma}$ -cortege (denoted by $\mathbf{1}_{\gamma}$) and there exists a unique zero $I_{2,\gamma}$ -cortege (denoted by $\mathbf{0}_{\gamma}$). It can be shown that there exists a unique binary operation on $S_{2,\gamma}$ (denoted by $\&_{2,\gamma}$) satisfying the following condition, for any X, Y in $S_{2,\gamma}$: if the first member of $I_{2,\gamma}$ -cortege X is 1 and the first member of $I_{2,\gamma}$ -cortege Y is 1 then $X\&_{2,\gamma}Y$ is $\mathbf{1}_{\gamma}$; otherwise, $X\&_{2,\gamma}Y$ is $\mathbf{0}_{\gamma}$. It can be shown that there exists a unique binary operation on $S_{2,\gamma}$ (denoted by $\lor_{2,\gamma}$) satisfying the following condition, for any X and Y in $S_{2,\gamma}$: if the first member of $I_{2,\gamma}$ -cortege X is 1 or the first member of $I_{2,\gamma}$ -cortege Y is 1 then $X \lor_{2,\gamma} Y$ is $\mathbf{1}_{\gamma}$; otherwise, $X \lor_{2,\gamma} Y$ is $\mathbf{0}_{\gamma}$. It can be shown that there exists a unique binary operation on $S_{2,\gamma}$ (denoted by $\supset_{2,\gamma}$) satisfying the following condition, for any X and Y in $S_{2,\gamma}$: if the first member of $I_{2,\gamma}$ -cortege X is 0 or the first member of $I_{2,\gamma}$ -cortege Y is 1 then $X \supset_{2,\gamma} Y$ is $\mathbf{1}_{\gamma}$; otherwise, $X \supset_{2,\gamma} Y$ is $\mathbf{0}_{\gamma}$. It can be shown that there exists a unique unary

operation on $S_{2,\gamma}$ (denoted by $\neg_{2,\gamma}$) satisfying the following condition, for any $I_{2,\gamma}$ -cortege $\langle x_1, x_2, \ldots, x_{\gamma}, x_{\gamma+1} \rangle$: if $x_{\gamma+1}$ is 1 then $\neg_{2,\gamma}(\langle x_1, x_2, \ldots, x_{\gamma}, x_{\gamma+1} \rangle) = \langle x_2, \ldots, x_{\gamma}, x_{\gamma+1} \rangle) =$ and if, if $x_{\gamma+1}$ is 0, then $\neg_{2,\gamma}(\langle x_1, x_2, \ldots, x_{\gamma}, x_{\gamma+1} \rangle) = \langle x_2, \ldots, x_{\gamma}, x_{\gamma+1}, 1 \rangle$.

It is clear that $\langle S_{2,\gamma}, D_{2,\gamma}, \&_{2,\gamma}, \vee_{2,\gamma}, \supset_{2,\gamma}, \neg_{2,\gamma} \rangle$ is a logical matrix. This logical matrix (denoted by $M_{2,\gamma}$) is said to be $I_{2,\gamma}$ -matrix. $M_{2,\gamma}$ -valuation is said to be a mapping the set of all propositional variables in L into $S_{2,\gamma}$. The set of all $M_{2,\gamma}$ -valuations is denoted by $ValM_{2,\gamma}$. It can be shown that there exists a unique mapping (denoted by $\xi M_{2,\gamma}$) satisfying the following conditions: (1) $\xi M_{2,\gamma}$ is a mapping a Cartesian product Form x $ValM_{2,\gamma}$ into the set $S_{2,\gamma}$, (2) for any propositional variable p in L and for any $M_{2,\gamma}$ -valuation w, $\xi M_{2,\gamma}(p,w) = w(p)$, (3) for any formulas A, B and for any $M_{2,\gamma}$ -valuation w, $\xi M_{2,\gamma}(A \& B, w) = \xi M_{2,\gamma}(A,w)\&_{2,\gamma}\xi M_{2,\gamma}(B,w)$, (4) for any formulas A, B and for any $M_{2,\gamma}$ -valuation w, $\xi M_{2,\gamma}(A,w)\vee_{2,\gamma}\xi M_{2,\gamma}(B,w)$, (5) for any formulas A, B and for any $M_{2,\gamma}$ -valuation w, $\xi M_{2,\gamma}(A,w)\supset_{2,\gamma}\xi M_{2,\gamma}(B,w)$, (6) for any formula A and for any $M_{2,\gamma}$ -valuation w, $\xi M_{2,\gamma}(A,w) \supset_{2,\gamma}\xi M_{2,\gamma}(B,w)$, (6) for any formula A and for any $M_{2,\gamma}$ -valuation w, $\xi M_{2,\gamma}(A,w) = \neg_{2,\gamma}\xi M_{2,\gamma}(A,w)$.

A formula A is said to be $M_{2,\gamma}$ -valid iff for any $M_{2,\gamma}$ -valuation w, $\xi M_{2,\gamma}(A,w) \in D_{2,\gamma}$.

The following theorems 9–11 are shown.

THEOREM 9. For any j in $\{1, 2, 3, ...\}$, for any formula A and for any set Γ of formulas, formula A is derivable from Γ in $HI_{2,j}$ iff for any $M_{2,j}$ -valuation w, if for any formula B from Γ , $\xi M_{2,j}(B, w) \in D_{1,j}$ then $\xi M_{2,j}(A, w) \in D_{2,j}$.

THEOREM 10. For any j in $\{1, 2, 3, ...\}$ and for any formula A, $A \in I_{2,j}$ iff A is $M_{2,j}$ -valid.

THEOREM 11. For any j in $\{1, 2, 3, ...\}$ and for any formula A, A is $M_{2,j}$ -valid iff for any $M_{2,j}$ -valuation w, $\xi M_{1,j}(A,w) \in \mathbf{1}_j$.

The following theorems 12–19 are shown with the help of the axiomatisations and semantics presented in the paper.

THEOREM 12. Logics $I_{2,1}$, $I_{2,2}$, $I_{2,3}$, ... $I_{2,\omega}$ are simple paracomplete logics.

THEOREM 13. For any j and k in $\{1, 2, 3, ... \omega\}$, if $j \neq k$ then $I_{2,j} \neq I_{2,k}$.

THEOREM 14. For any j in $\{1, 2, 3, ... \omega\}$, the positive fragment of logic $I_{2,j}$ is equal to the positive fragment of logic $I_{2,0}$.

THEOREM 15. For any j in $\{1, 2, 3, \dots \omega\}$, logic $I_{2,j}$ is decidable.

THEOREM 16. For any j in $\{1, 2, 3, ...\}$, logic $I_{2,j}$ is finitely-valued.

Theorem 17. Logic $I_{2,\omega}$ is not finitely-valued.

Theorem 18. Logic $I_{2,\omega}$ is equal to the intersection of logics $I_{2,1}$, $I_{2,2}$, $I_{2,3}$, ...

Theorem 19. There is a continuum of logics which include $I_{2,\omega}$ and are included in $I_{2,1}$.

References

- [1] BOLOTOV, A., GRIGORYEV, O., and SHANGIN, V., Automated Natural Deduction for Propositional Linear-time Temporal Logic, *Proceedings* of the 14th International Symposium on Temporal Representation and Reasoning (Time2007), Alicante, Spain, June 28-June 30, pp.47–58, 2007.
- [2] BOLOTOV, A.E., SHANGIN, V., Natural Deduction System in Paraconsistent Setting: Proof Search for PCont, *Journal of Intelligent Systems*, 21(1):1–24, 2012.
- [3] Gentzen, G., Investigations into logical deductions, *Mathematical the-ory of logical deduction*, Nauka Publishers, M., 1967, pp. 9–74 (in Russian).
- [4] KLEENE, S. C., Introduction to Metamathematics, Ishi Press International, 1952.
- [5] POPOV, V. M., On the logic related to A. Arruda's system V1, Logic and Logical Philosophy, 7:87–90, 1999.
- [6] POPOV, V. M., Intervals of simple paralogics, *Proceedings of the V conference 'Smirnov Readings in Logic'*, *June*, 20-22, 2007, M., 2007, pp. 35–37 (in Russian).
- [7] Popov, V. M., Two sequences of simple paraconsistent logics, *Logical investigations*, Vol. 14, M., 2007, pp. 257–261 (in Russian).

- [8] POPOV, V. M., Two sequence of simple paracomplete logics, *Logic to-day: theory, history and applications. The proceedings of X Russian conference, June, 26-28, 2008*, St.-Petersburg, SPbU Publishers, 2008, pp. 304–306 (in Russian).
- [9] POPOV, V. M., Semantical characterization of paracomplete logics I_{2,1}, I_{2,2}, I_{2,3}, ..., Logic, methodology: actual problems and perspectives. The proceedings of conference, Rostov-on-Don, UFU Publishers, 2010, pp. 114-116 (in Russian).
- [10] POPOV, V. M., Sequential characterization of simple paralogics, Logical investigations, 16:205–220, 2010 (in Russian).
- [11] VASILIEV, N. A., Imaginary (non-Aristotelian) logic, Vasiliev N.A. Imaginary logic. Selected works, M., Nauka Publishers, 1989, pp. 53–94 (in Russian).