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abstract. We consider the logic QCTL, a first-order exten-
sion of CTL defined as a logic of Kripke frames for CTL. We
study the question about recursive enumerability of its fragments
specified by a set of temporal modalities we use. Then we discuss
some questions concerned axiomatizability and Kripke complete-
ness.
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1 Introduction
There are at least two reasons to study branching time logics: philo-
sophical and originating in computer science. Such logics provides
us with formalisms allowing to construct and verify sentences about
indeterminate future (philosophical aspect) or about some state
transition systems (in computer science).

There are a lot of propositional temporal logics, and they found
their applications both in philosophy, and computer science, see [4].
Here we deal with first-order logics of branching time, more ex-
actly, first-order extensions of the logic CTL introduced by A.Prior,
see [10].2 It is known that such logics are undecidable and even not

1The work was supported by Russian Foundation for Basic Research,
Projects № 11–06–00456 and № 13–06–00861.

2The abbreviation ‘CTL’ means ‘computational tree logic’. In [10] A. Prior
does not introduce this abbreviation but he discuss logics of branching time, in
particular, Cocchiarella’s tense-logic (which may have the same abbreviation).
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recursively enumerable; moreover for correspondent proofs it is suf-
ficient to use only unary predicate letters, see [5, 6, 12].

The main aim of the paper is to show how one may prove that a
logic (a fragment of a logic) is not recursively enumerable.

To do this we simulate positive integers with the relation ‘less
than’; this is the key part of the paper. Then, we use positive
integers to embed the finite model theory (which is not recursively
enumerable) into first-order branching time logic.

On the one hand, as a result we obtain that many fragments of
logics we consider are not finitely (and even recursively) axiomati-
zable. Note that we define these logics semantically by means of
Kripke frames; therefore, on the other hand, it follows that many
calculi are not Kripke complete.

Note that the results (as theorems) presented in this paper are
quite expected; moreover, most of them are known or follow from
other known facts. The feature of our proofs is that, in fact, we
use only embeddings of logics and nothing more. Therefore, to
understand our proofs it is sufficient to be familiar with the classical
first-order logic (theory) of finite domains.

2 Definitions
To define the logic we deal with, first of all we need a language.
Consider the language containing

• individual variables x0, x1, x2, . . .;

• predicate letters Pm
i , for every m, i ∈ N;

• logical constant ⊥;

• logical connectives ∧, ∨, →;

• quantifier symbols ∀, ∃;

• modality symbols A, E, X, G, F , U ;

• symbols (, ), and comma.

Now define formulas we consider here. Atomic formulas are ⊥
and Pm

i (xk1 , . . . , xkm) where m, i, k1, . . . , km are positive integers.
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If φ and ψ are formulas then (φ∧ψ), (φ∨ψ), (φ→ ψ), ∀xiφ, ∃xiφ,
AXφ, EXφ, AFφ, EFφ, AGφ, EGφ, (φAUψ), and (φEUψ)
are formulas, too. We call such formulas temporal.

Also we use ⊤, ¬, and ↔ as usual abbreviations:

¬φ = (φ→ ⊥);

⊤ = ¬⊥;

(φ↔ ψ) = ((φ→ ψ) ∧ (ψ → φ)).

We omit parenthesis that can be recovered according to the fol-
lowing priority of the connectives: unary modalities, quantifiers, ¬,
binary modalities, ∧, ∨, ↔, →.

We make a remark about modalities used in formulas. Any
‘atomic’ modality consists of two symbols: the first symbol is E
or A and the second one is X, G, F , or U . Every of these sym-
bols corresponds to some modality in more general language, see [2].
The intending meaning of the modalities E, A, X, G, F , U is as
follows: let us imagine that we are in some situation (current state)
and it is possible to define consequences of future states; then

E means ‘there is a consequence of future states
(starting in the current one) such that. . . ’;

A means ‘for every consequence of future states
(starting in the current one) it is true
that. . . ’;

Xφ means ‘φ is true in the next state of the conse-
quence’;

Gφ means ‘φ is true in every state of the conse-
quence’;

Fφ means ‘φ is true in some state of the consequence’;
φUψ means ‘ψ is true in at least one state of the con-

sequence and φ is true until ψ is true’.

Of course, since we use modalities only in pairs we have no formulas
like Xφ or φUψ; but now we have some informal definition for our
modalities. For example AFφ means that for every consequence of
future states (starting in the current one), φ is true in some state
of the consequence.
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To make the meaning of the modalities more clear we need se-
mantics. As semantics for this language we use Kripke frames and
models.

A pair F = ⟨W,R⟩ is called Kripke frame if W is non-empty set
and R is a binary relation on W . We call elements of W worlds or
states; we call R accessibility relation on W . We write wRw′ instead
of ⟨w,w′⟩ ∈ R; if wRw′ we say that w′ is accessible from w.

We may understand a Kripke frame as a structure of (branching)
time where wRw′ means that w′ is a possible next future state
relative to w.

Here we consider mainly serial Kripke frames; recall that a frame
F = ⟨W,R⟩ is said to be serial if, for any w ∈ W , there is w′ ∈ W
such that wRw′.

An infinite consequence π = w0, w1, w2, . . . is called a path in a
frame F = ⟨W,R⟩ if, for any k ∈ N, we have wk ∈W and wkRwk+1.
We assume that πk denotes the k-th element of the path π. We say
that a path π starts in a world w if π0 = w.

Note that if w is a world of a serial Kripke frame F then there is
at least one path in F starting in w.

A triple F(D) = ⟨W,R,D⟩ is called predicate Kripke frame if
⟨W,R⟩ is a Kripke frame and D is a map associating with every
w ∈W some non-empty set Dw (i. e., D(w) = Dw) such that

wRw′ =⇒ D(w) ⊆ D(w′),

for any w,w′ ∈ W . Elements in Dw are called individuals of the
world w, the set D(w) is called domain of w.

Now we need a tool connecting predicate frames with our lan-
guage. As such tool we use two notions: interpretation of predicate
letters and interpretation of individual variables.

Let F(D) = ⟨W,R,D⟩ be a predicate Kripke frame. A function I
is called interpretation of predicate letters in F(D) if I(w,Pm

i ) is
an m-ary relation on D(w), for every w ∈ W and every predicate
letter Pm

i .
A tuple M = ⟨W,R,D, I⟩ is called Kripke model if ⟨W,R,D⟩

is a predicate Kripke frame and I is an interpretation of predicate
letters in ⟨W,R,D⟩.
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Let F(D) = ⟨W,R,D⟩ be a predicate Kripke frame and let w be
a world in it. A function α is called interpretation of individual
variables in a world w ∈ W if α(xi) ∈ D(w), for every individual
variable xi.

Note that if w′ is accessible from w and α is an interpretation of
individual variables in w then α is an interpretation of individual
variables in w′, too, because in this case we have D(w) ⊆ D(w′).

For any individual variable xi, we define the binary relation xi=
between interpretations. For interpretations α and β we put

α
xi= β � α(xk) = β(xk), for any k ∈ N such that k ̸= i.

Let F = ⟨W,R⟩ be a serial Kripke frame, M = ⟨W,R,D, I⟩ be
a Kripke model on F. We define the truth relation ‘a formula φ is
true at a world w ∈ W in a model M under an interpretation α of
individual variables in w’ inductively (by constructing of φ):

(M, w) ̸|=α ⊥;

(M, w) |=α Pm
i (x) � α(x) ∈ I(w,Pm

i ) where
x = (xk1 , . . . , xkm),
α(x) = ⟨α(xk1), . . . , α(xkm)⟩;

(M, w) |=α φ1 ∧ φ2 � (M, w) |=α φ1 and (M, w) |=α φ2;

(M, w) |=α φ1 ∨ φ2 � (M, w) |=α φ1 or (M, w) |=α φ2;

(M, w) |=α φ1 → φ2 � (M, w) ̸|=α φ1 or (M, w) |=α φ2;

(M, w) |=α AXφ1 � for any path π starting in w the re-
lation (M, π1) |=α φ1 is true;

(M, w) |=α EXφ1 � there is a path π starting in w such
that (M, π1) |=α φ1;

(M, w) |=α AFφ1 � for any path π starting in w
there is some k ∈ N such that
(M, πk) |=α φ1;
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(M, w) |=α EFφ1 � there are a path π starting in w and
k ∈ N such that (M, πk) |=α φ1;

(M, w) |=α AGφ1 � for any path π starting in w
and for any k ∈ N the relation
(M, πk) |=α φ1 is true;

(M, w) |=α EGφ1 � there is a path π starting in w such
that for any k ∈ N the relation
(M, πk) |=α φ1 is true;

(M, w) |=α φ1AUφ2 � for any path π starting in w
there is some k ∈ N such that
(M, πk) |=α φ2 and, for any j ∈ N,
such that j < k the relation
(M, πj) |=α φ1 is true;

(M, w) |=α φ1EUφ2 � for some path π starting in w
and some k ∈ N such that
(M, πk) |=α φ2 and, for any j ∈ N,
such that j < k the relation
(M, πj) |=α φ1 is true;

(M, w) |=α ∀xiφ1 � for any interpretation β such that
β

xi= α and β(xi) ∈ D(w) the rela-
tion (M, w) |=β φ1 is true;

(M, w) |=α ∃xiφ1 � there is an interpretation β such
that β

xi= α, β(xi) ∈ D(w), and
(M, w) |=β φ1.

The relations ‘φ is true at w in M’, ‘φ is true in M’, ‘φ is true in
F(D)’, and ‘φ is true in F’ are defined as follows:

(M, w) |= φ � (M, w) |=α φ, for any interpretation
α of individual variables in w;

M |= φ � (M, w) |= φ, for any w ∈W ;



74 Ekaterina Kotikova, Mikhail Rybakov

F(D) |= φ � M |= φ, for any model M based
on F(D);

F |= φ � M |= φ, for any model M based
on F.

Note that any world w in a model M = ⟨W,R,D, I⟩ may be
understood as a usual model for the classical first-order language.
Indeed, as such model one may take the model Mw = ⟨Dw, Iw⟩
where Dw = D(w) and Iw(Pm

i ) = I(w,Pm
i ), for every predicate

letter Pm
i .

We define the logic QCTL as the set of all temporal formulas
that are true in any serial Kripke frame.

The logic CTL is a propositional fragment of QCTL.
Let also QCL denote the classical first-order logic in the modal-

free fragment of the language for QCTL and let QCLfin denote the
logic of all finite models, i. e., the set of classical first-order formulas
that are true in any model with finite domain.

3 Some facts
In this section we just recall some ‘algorithmic’ definitions and facts;
so, the reader may omit this section.

Let U be some universal set (for example, a set of all formulas in
some language). A set X is called decidable if there is an effective
procedure (algorithm) A such that, for any x ∈ U ,

A(x) =

{
1 if x ∈ X,
0 if x ̸∈ X;

otherwise X is called undecidable.
A set X is called recursively enumerable if X = ∅ or there is

an effective procedure (algorithm) A such that A(n) is defined for
every n ∈ N and X = {A(n) : n ∈ N}, in other words, if there is an
effective enumeration for elements of X.

Note that if a logic is recursively (in particular, finitely) axiom-
atizable then it is recursively enumerable because in this case it
is possible to enumerate effectively all derivations, and hence, all
derivable formulas.
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For a logic L, let L denote the complement of L in the set of all
formulas in the language of L.

Below we will use the following facts, see [1, 11]:

• the logic QCL is undecidable; QCL is recursively enumerable
and QCL is not;

• the logic QCLfin is undecidable; QCLfin is recursively enu-
merable and QCLfin is not.

A set X is called recursively reducible to a set Y if there is an
effective procedure (algorithm) A such that

x ∈ X ⇐⇒ A(x) ∈ Y,

for any x (in the appropriate universal set U).
Let X be recursively reducible to Y . It is not hard to see that

• if Y is decidable then X is decidable;

• if Y is recursively enumerable then X is recursively enumer-
able.

4 Main aim
Let M ⊆ {AX,EX,AG,EG,AF ,EF ,AU ,EU} and let X be a
set of formulas (in some language). We use the denotation X � M
for the set of formulas in X those modalities belong to the set M∗

(i. e., constructed only from modalities of M).
Our main aim is to describe some (algorithmic, semantical, de-

ductive) properties of the logic QCTL �M .
Of course, it is expected that properties of QCTL � M depend

on M . Indeed, it is not hard to see that QCTL � ∅ = QCL and
hence QCTL � ∅ is finitely axiomatizable. But it follows from [12]
that QCTL � {AX,AG} is not recursively enumerable, wherefore
it is not finitely (and even recursively) axiomatizable.

Below we prove the following statement.
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Theorem 1. Let M be a set of modalities including only some of
AX, EX, AG, EG, AF , EF , AU , EU . Then the following
equivalence holds:

QCTL �M is recursively enumerable
⇐⇒

M ⊆ {AX,EX} or M ⊆ {AG,EF }.

Then, using Theorem 1 (and its proof) we will be able to prove
some statements about algorithmic, semantical, and deductive prop-
erties of some first-order extensions of CTL.

5 Recursively enumerable fragments of QCTL

In this section we prove the following part of Theorem 1: if
M ⊆ {AX,EX} or M ⊆ {AG,EF } then QCTL � M is re-
cursively enumerable.

To do this let us observe that

(a) QCTL � ∅ = QCL;

(b) for any formula φ,

AXφ↔ ¬EX¬φ ∈ QCTL,
EXφ↔ ¬AX¬φ ∈ QCTL,
AGφ ↔ ¬EF¬φ ∈ QCTL,
EFφ ↔ ¬AG¬φ ∈ QCTL.

Because of (a), the logic QCTL � ∅ is recursively enumerable and
even finitely axiomatizable. Then, because of (b), it is sufficient to
prove that QCTL � {AX} and QCTL � {AG} are recursively
enumerable.

To prove the last statement we use the first-order modal logics
QD and QS4.

The language of QD and QS4 contains the same symbols as the
language of QCL and the modality symbol 2. Also we have the
following extra rule for formula constructing: if φ is a formula then
2φ is a formula. We call formulas in this language modal formulas.
The notions of Kripke frame and Kripke model are the same as they
are defined in Section 2.
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Let F = ⟨W,R⟩ be a Kripke frame, M = ⟨W,R,D, I⟩ be a Kripke
model on F. Now we define the relation ‘a modal formula φ is
true at a world w ∈ W in a model M under an interpretation α
of individual variables in w’. To differ the truth relation for modal
formulas and the truth relation for temporal formulas we use the
sign ‘||=’ for the first of them. This relation is defined inductively
(by constructing of φ) in the same way as for temporal formulas, see
page 72. The cases for the atomic formulas, for the connectives ∧,
∨, →, and for the quantifiers ∀xi and ∃xi are the same (the reader
just must replace ‘|=’ with ‘||=’). As for 2, the definition looks as
follows:

(M, w) ||=α 2φ1 � for any w′ ∈W such that wRw′ the
relation (M, w′) ||=α φ1 is true.

The relations (M, w) ||= φ, M ||= φ, F(D) ||= φ, and F ||= φ are
defined as on page 73.

Now we define the logic QD as the set of all modal formulas that
are true in any serial frame and the logic QS4 as the set of all modal
formulas that are true in any reflexive and transitive frame.

It is known that QD and QS4 are finitely axiomatizable and,
in particular, recursively enumerable, see [3]. We are going to
show that QCTL � {AX} is recursively reducible to QD and
QCTL � {AG} is recursively reducible to QS4.

Let us define translations T1 and T2. Suppose a temporal formula
φ does not contain modalities different from AX and its iterations;
then define T1(φ) to be a modal formula obtained from φ by re-
placing every occurrence of AX with 2. Let φ does not contain
modalities different from AG and its iterations; then define T2(φ) to
be a modal formula obtained from φ by replacing every occurrence
of AG with 2.

Observation 1. For any temporal formula φ without modalities
different from AX and its iterations, the following equivalence
holds:

φ ∈ QCTL ⇐⇒ T1(φ) ∈ QD,

i. e., T1 recursively reduces QCTL � {AX} to QD.
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Proof. Let φ be a formula without modalities different from AX
and its iterations.

Let φ ̸∈ QCTL. Then there is a serial model M = ⟨W,R,D, I⟩,
a world w0 ∈ W , and an interpretation α0 of individual variables
in w0 such that (M, w0) ̸|=α0 φ.

In this case, for any formula ψ, any w ∈ W , and any interpreta-
tion α of individual variables in w, the following equivalence holds:

(M, w) |=α ψ ⇐⇒ (M, w) ||=α T1(ψ).

The proof proceeds by induction on constructing of ψ and we left
the details to the reader.

As a result we obtain that (M, w0) |̸|=α0 T1(φ) and hence,
T1(φ) ̸∈ QD.

Let T1(φ) ̸∈ QD. Then there is a serial model M = ⟨W,R,D, I⟩,
a world w0 ∈ W , and an interpretation α0 of individual variables
in w0 such that (M, w0) |̸|=α0 T1(φ). With the same argumentation
we obtain that (M, w0) ̸|=α0 φ, therefore, φ ̸∈ QCTL. 2

Observation 2. For any temporal formula φ without modalities
different from AG and its iterations, the following equivalence holds:

φ ∈ QCTL ⇐⇒ T2(φ) ∈ QS4,

i. e., T2 recursively reduces QCTL � {AG} to QS4.

Proof. Let φ be a formula without modalities different from AG
and its iterations.

Let φ ̸∈ QCTL. Then there is a serial model M = ⟨W,R,D, I⟩,
a world w0 ∈ W , and an interpretation α0 of individual variables
in w0 such that (M, w0) ̸|=α0 φ.

Let R∗ be reflexive and transitive closure of R and let
M∗ = ⟨W,R∗, D, I⟩. Then, for any formula ψ, any w ∈W , and any
interpretation α of individual variables in w, the following equiva-
lence holds:

(M, w) |=α ψ ⇐⇒ (M∗, w) ||=α T2(ψ).

The proof proceeds by induction on constructing of ψ and we again
left the details to the reader.
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In particular, we have (M∗, w0) |̸|=α0 T2(φ). Because M∗ is a
model for QS4, we obtain T2(φ) ̸∈ QS4.

Let T2(φ) ̸∈ QS4. Then there is a reflexive and transitive model
M = ⟨W,R,D, I⟩, a world w0 ∈ W , and an interpretation α0 of
individual variables in w0 such that (M, w0) |̸|=α0 T1(φ). Because
M is reflexive, it is serial. Then, for any formula ψ, any w ∈ W ,
and any interpretation α of individual variables in w,

(M, w) |=α ψ ⇐⇒ (M, w) ||=α T2(ψ),

and hence, (M, w0) ̸|=α0 φ. Thus, φ ̸∈ QCTL. 2

Because the logics QD and QS4 are recursively enumerable,
from Observations 1 and 2 it follows that QCTL � {AX} and
QCTL � {AG} are recursively enumerable. In fact, even more
strong result holds.

Proposition 1. The temporal logics QCTL � {AX} and
QCTL � {AG} are finitely axiomatizable.

Proof. It is sufficient to observe that the translation T1 is an
isomorphism between QCTL � {AX} and QD, the translation T2
is an isomorphism between QCTL � {AG} and QS4. 2

6 Main technical construction
Now we start to prove that if M ̸⊆ {AX,EX} and
M ̸⊆ {AG,EF } then QCTL �M is not recursively enumerable.

Here we present some technical constructions and statements;
then we apply them to achieve the main aim.

Let us fix three binary letters and one unary letter; to make it
easier to understand (and with according of their intending mean-
ing) we denote them ≈, ≺, ≺1, and L. To explain the intending
meaning of these predicate letters, let us imagine that we try to
order equivalence classes of some set; then

x ≈ y means ‘x and y are equivalent’;
x ≺ y means ‘x is less than y’;
x ≺1 y means ‘y is the next element after x’;
L(x) means ‘x is a label (for a current state)’.
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With help of ‘labels’ and modalities we show how to describe the
condition that equivalence classes are ordered as positive integers
by the relation ‘less than’.

Let us define some formulas. The formula A1 claims ≈ to be an
equivalence relation:

A1 = ∀x(x ≈ x) ∧ ∀x∀y(x ≈ y → y ≈ x) ∧
∀x∀y∀z(x ≈ y ∧ y ≈ z → x ≈ z).

The formula A2 claims ≈ to be a congruence relative to ≺:

A2 = ∀x∀y∀u∀v(x ≈ u ∧ y ≈ v → (x ≺ y → u ≺ v)).

The formula A3 claims ≺ to be a strict linear order (on equivalence
classes):

A3 = ∀x¬(x ≺ x) ∧
∀x∀y∀z(x ≺ y ∧ y ≺ z → x ≺ z) ∧

∀x∀y(x ≺ y ∨ x ≈ y ∨ y ≺ x).

The formula A4 defines ≺1 as a successor relation with respect to ≺:

A4 = ∀x∀y((x ≺1 y) ↔ (x ≺ y ∧ ¬∃z(x ≺ z ∧ z ≺ y))).

The formula A5 means that any element has a successor:

A5 = ∀x∃y(x ≺1 y).

Let x ̸≈ y be the abbreviation for ¬(x ≈ y). The formulas A6 and
A7 claim heredity for ≺1 and ̸≈, correspondingly:

A6 = ∀x∀y(x ≺1 y → AG(x ≺1 y));
A7 = ∀x∀y(x ̸≈ y → AG(x ̸≈ y)).

The formula A8 means for a world that it has a unique label (if it
has a label at all):

A8 = ∀x∀y(L(x) ∧ L(y) → x ≈ y).

The formula A9 means that any next world has the next label:

A9 = ∀x∀y(L(x) ∧ x ≺1 y → AXL(y)).
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Let

A = AG(A1 ∧ . . . ∧A9).

Let also

B = ∃x(L(x) ∧ ¬∃y(y ≺ x)).

The formula B means that there is a least element (‘zero’) and it is
a label (in a world where B is true). Finally, let

C = ∀xEFL(x).

The formula C means that any element (of some current world)
labels some future world.

As we will see below, the formula A ∧ B ∧ C provides us with
a condition that is sufficient to prove that equivalence classes are
ordered with ≺ as positive integers with the relation ‘less than’. But
before this we show that the formula A∧B∧C is QCTL-satisfiable,
i. e., ¬(A ∧B ∧ C) ̸∈ QCTL.

Let M0 = ⟨W0, R0, D0, I0⟩ where

W0 = {wi : i ∈ N};

wiR0wj � j = i+ 1;

D0(wi) = N;

I0(wi,≈) = {⟨m,m⟩ : m ∈ N};

I0(wi,≺) = {⟨m, k⟩ : m, k ∈ N and m < k};

I0(wi,≺1) = {⟨m,m+ 1⟩ : m ∈ N};

I0(wi, L) = {⟨i⟩}.

Lemma 1. It is true that (M0, w0) |= A ∧B ∧ C.

Proof is straightforward and left to the reader. 2

Proposition 2. The formula A ∧B ∧ C is QCTL-satisfiable.

Proof. It is sufficient to observe that the accessibility relation in
the model M0 is serial and then use Lemma 1. 2
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Now let us turn to the key technical lemmas of the article.
Let M = ⟨W,R,D, I⟩ be a serial model and w∗ be a world in W

such that (M, w∗) |= A ∧B ∧ C.
For simplicity let us use the following abbreviations, for any

w ∈W :

≈w= I(w,≈), ≺w= I(w,≺), ≺w
1 = I(w,≺1), L

w = I(w,L).

Let also, for any w,w′ ∈W and any k ∈ N,

wR0w′ � w = w′;

wRk+1w′ � wRku and uRw′, for some u ∈W ;
wR∗w′ � wRmw′, for some m ∈ N.

Observe that (M, w) |= A1 ∧ . . . ∧ A9, for any w ∈ W such that
w∗R∗w; this is so because (M, w∗) |= AG(A1 ∧ . . . ∧A9).

Lemma 2. Let w ∈ W and w∗R∗w. Then the relation ≈w is a
congruence with respect to the relation ≺w.

Proof immediately follows from (M, w) |= A1 ∧A2. 2

Because of Lemma 2 we may define congruence classes: for any
w ∈W such that w∗R∗w and any a ∈ D(w) we put

[a]w = {b ∈ D(w) : b ≈w a}.

Note that the relations ≺w and ≺w
1 on D(w) generate the relations

≺w and ≺w
1 on equivalence classes defined in the following way:

[a]w ≺w [b]w � a ≺w b;

[a]w ≺w
1 [b]w � a ≺w

1 b,

for any w ∈W such that w∗R∗w and for any a, b ∈ D(w). Let also

[a]w 4w [b]w � [a]w ≺w [b]w or [a]w = [b]w.

Let, for any w ∈W such that w∗R∗w,

Dw = {[a]w : a ∈ D(w)}.
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For the rest of this section our aim is to prove that ⟨Dw∗
,≺w∗⟩ is

isomorphic to ⟨N, <⟩.
Lemma 3. Let w ∈ W and w∗R∗w. Then the relation ≺w is a
strict linear order on Dw and ≺w

1 is the successor relation on Dw

with respect to ≺w.

Proof immediately follows from (M, w) |= A3 ∧A4. 2

Since (M, w∗) |= B, there is a0 ∈ D(w∗) such that Lw∗
(a0) and

[a0]
w∗ 4w∗

[a]w
∗ , for any a ∈ D(w∗). Then, due to (M, w∗) |= A5,

there are a1, a2, a3, . . . ∈ D(w∗) such that

a0 ≺w∗
1 a1 ≺w∗

1 a2 ≺w∗
1 a3 ≺w∗

1 . . . ;

note by the way that equivalence classes generated by elements
a0, a1, a2, a3, . . . in D(w∗) are pairwise different.

Lemma 4. Let w ∈W and w∗R∗w. Then

a ≺w∗
1 b =⇒ a ≺w

1 b;

a ̸≈w∗
b =⇒ a ̸≈w b,

for any a, b ∈ D(w∗).

Proof immediately follows from (M, w∗) |= A6 ∧A7. 2

Lemma 5. Let w ∈W , k ∈ N, and w∗Rkw. Then Lw(ak) is true.

Proof proceeds by induction on k.
Let k = 0. Then we must prove that Lw∗

(a0) is true; but we have
Lw∗

(a0) to be true because of choosing of a0.
Let the statement be true for k; we prove it for k + 1. Let

w∗Rk+1w. Then there is u ∈ W such that w∗Rku and uRw.
By induction hypothesis, Lu(ak) holds. By Lemma 4, we have
ak ≺u

1 ak+1. Then, from (M, u) |= A9 and uRw we obtain Lw(ak+1).
2

Lemma 6. Let b ∈ D(w∗). Then b ≈w∗
ak, for some k ∈ N.
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Proof. Because of (M, w∗) |= C, there is w ∈W such that w∗Rkw,
for some k ∈ N, and Lw(b) is true. By Lemma 5, Lw(ak) is true.
Then, from (M, w) |= A8 we obtain b ≈w ak and, by Lemma 4, we
obtain b ≈w∗

ak. 2

As a corollary we obtain the next statement.

Proposition 3. The structures ⟨Dw∗
,≺w∗⟩ and ⟨N, <⟩ are iso-

morphic.

Proof. For any k ∈ N, let f(k) = [ak]w
∗ . We show that f is the

required isomorphism. Clearly, k < m implies [ak]w
∗ ≺w∗

[am]w
∗ .

So, we must prove that f is injective and surjective.
Injectivity of f . Let k ̸= m; without a loss of generality we

may assume that k < m. But then [ak]w
∗ ≺w∗

[am]w
∗ and hence

f(k) ̸= f(m).
Surjectivity of f . Let b ∈ D(w∗). Then, by Lemma 6, we have

b ≈w∗
ak, for some k ∈ N; this means that [b]w

∗
= [ak]w

∗
= f(k). 2

7 Embedding of QCLfin into QCTL

Let φ be some closed classical first-order formula and let y be some
individual variable not occurring in φ. Let also x 4 y be an abbrevi-
ation for the formula (x ≺ y∨x ≈ y). We define the translation Ty:

Ty(⊥) = ⊥;

Ty(Pm
i (xk1 , . . . , xkm)) = Pm

i (xk1 , . . . , xkm);

Ty(ψ′ ∧ ψ′′) = Ty(ψ′) ∧ Ty(ψ′′);

Ty(ψ′ ∨ ψ′′) = Ty(ψ′) ∨ Ty(ψ′′);

Ty(ψ′ → ψ′′) = Ty(ψ′) → Ty(ψ′′);

Ty(∀xψ′) = ∀x(x 4 y → Ty(ψ′));

Ty(∃xψ′) = ∃x(x 4 y ∧ Ty(ψ′))

where ψ′ and ψ′′ are subformulas of the formula φ. Then we put
T (φ) = ∀y Ty(φ).

To explain the intending meaning of Ty(φ) and T (φ) let us imag-
ine that we interpret individual variables as positive integers and
4 as the relation 6 on N. Then Ty(φ) means ‘φ is true in any
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model with elements 0, . . . , y’ and T (φ) means ‘φ is true in any
finite model’.

Let Pm1
i1
, . . . , Pmk

ik
be the list of all predicate letters occurring

in φ. We define the formula Congr(φ) as a conjunction of formulas
in the following form:

∀x1 . . . ∀xmj∀y1 . . .∀ymj

( mj∧
i=1

(xi ≈ yi) →

→ (P
mj

ij
(x1, . . . , xmj ) → P

mj

ij
(y1, . . . , ymj ))

)
where j ∈ {1, . . . , k}. Let

Emb(φ) = A ∧B ∧ C ∧ Congr(φ) → T (φ).

Lemma 7. φ ∈ QCLfin ⇐⇒ Emb(φ) ∈ QCTL.

Proof. Suppose φ ̸∈ QCLfin. Then there is a classical model
S = ⟨S, J⟩ where S is a finite set, J is an interpretation of predicate
letters in S, such that S ̸|= φ. Without a loss of generality we may
assume that S = {0, . . . , n}, for some n ∈ N.

Let M0 be Kripke model defined on page 81. We extend I0 on
predicate letters occurring in φ; let

I0(w0, P
mj

ij
) = {⟨k1, . . . , kmj ⟩ : ⟨k1, . . . , kmj ⟩ ∈ J(P

mj

ij
)},

for any j ∈ {1, . . . , k}, i. e., I0(w0, P
mj

ij
) = J(P

mj

ij
). Let also

I0(wi, P
mj

ij
) = ∅, for any i ∈ N+.

Then we claim (M0, w0) ̸|= Emb(φ). Since the letter ≈ is
interpreted with the identity relation on D(w0), it is clear that
(M0, w0) |= Congr(φ). By Lemma 1, we have (M0, w0) |= A∧B∧C.
Hence we just must prove that (M0, w0) ̸|= ∀y Ty(φ). It is sufficient
to interpret y as n. More exactly, the following condition holds: for
any subformula ψ of the formula φ, for any interpretation α such
that α(x) ∈ {0, . . . , n}, for any individual variable x, and α(y) = n,

S |=α ψ ⇐⇒ (M0, w0) |=α Ty(ψ).

We left the proof of the condition to the reader; it proceeds by
induction on constructing of ψ. Thus, (M0, w0) ̸|=α Ty(φ), for any
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such interpretation α. Therefore (M0, w0) ̸|= ∀y Ty(φ) and hence
(M0, w0) ̸|= Emb(φ).

Since the model M0 is serial, we have Emb(φ) ̸∈ QCTL.
Now suppose Emb(φ) ̸∈ QCTL. Then there is a serial model

M = ⟨W,R,D, I⟩ such that (M, w∗) ̸|= Emb(φ), for some w∗ ∈W .
From (M, w∗) ̸|= Emb(φ) we obtain (M, w∗) |= A∧B∧C and hence
we may use results of Section 6. Let

≈w∗
= I(w∗,≈), ≺w∗

= I(w∗,≺).

Let also
[a] = {b ∈ D(w∗) : b ≈w∗

a};

Dw∗
= {[a] : a ∈ D(w∗)};

[a] ≺w∗
[b] � a ≺w∗

b.

Then, by Proposition 3, the structures ⟨Dw∗
,≺w∗⟩ and ⟨N, <⟩ are

isomorphic. Let g : Dw∗ → N be an isomorphism between the
structures. Let us define an interpretation J for predicate letters
occurring in T (φ). Let P be a predicate letter occurring in T (φ),
i. e., P is one of the letters Pm1

i1
, . . . , Pmk

ik
, ≈, and ≺, and let m be

the arity of P . We put

J(P ) = {⟨g([b1]), . . . , g([bm])⟩ : ⟨b1, . . . , bm⟩ ∈ I(w∗, P )}.

From (M, w∗) ̸|= Emb(φ) it follows that (M, w∗) |= Congr(φ) and
hence the relation ≈w∗ is a congruence relative to I(w∗, P

mj

ij
), for

any j ∈ {1, . . . , k}. This means that J is well defined. Note that,
in particular, J(≈) is the identity relation on N and J(≺) is the
relation < on N.

Let S = ⟨N, J⟩.
We claim S ̸|= T (φ). Let α be an interpretation of individual

variables in D(w∗) and β be an interpretation of individual variables
in N; we call α and β agreed interpretations if β(x) = g([α(x)]), for
any variable x. Then

(M0, w0) |=α χ ⇐⇒ S |=β χ,

for any agreed interpretations α and β and for any classical formula
χ containing no predicate letters different from Pm1

i1
, . . . , Pmk

ik
, ≈,
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and ≺; the details are left to the reader. Since (M, w∗) ̸|= Emb(φ),
we have (M, w∗) ̸|= T (φ), and hence, S ̸|= T (φ).

It follows from S ̸|= T (φ) that S ̸|=α Ty(φ), for some interpre-
tation α. Let n = α(y) and S′ = ⟨{0, . . . , n}, J ′⟩ where J ′ is a
restriction of J on {0, . . . , n}. Then, for any subformula ψ of the
formula φ, for any interpretation β such that β(x) ∈ {0, . . . , n}, for
any variable x, and β(y) = n,

S′ |=β ψ ⇐⇒ S |=β Ty(ψ).

The details of the proof are left to the reader.
Since S ̸|=α Ty(φ) we obtain S′ ̸|= φ. The model S′ is finite,

therefore φ ̸∈ QCLfin. 2

Corollary 1. The logic QCTL is not recursively enumerable.

Corollary 2. The logic QCTL � {AX,AG} is not recursively
enumerable.

8 Modifications for other fragments
Now we have got a ‘weak Theorem 1’: just for the case
M ⊆ {AX,EX,AG,EF }. What about other modalities? In
this section we show that the fragment of QCTL with any of the
modalities AF , EG, AU , and EU is not recursively enumerable.
Since, for any formula φ,

EGφ↔ ¬AF¬φ ∈ QCTL;

AFφ↔ ¬EG¬φ ∈ QCTL;

AFφ↔ ⊤AUφ ∈ QCTL,

it is sufficient to prove that QCTL � {EU} is not recur-
sively enumerable and that at least one of QCTL � {AF } and
QCTL � {EG} is not recursively enumerable. We consider the
first and the second fragments.

To prove that these fragments are not recursively enumerable,
it is sufficient to construct some embeddings of QCLfin into the
fragments. To construct such embeddings we modify the embed-
ding Emb defined on page 85. Our modifications do not concern
‘classical’ part of Emb(φ), i. e., we modify only the formulas A, B,
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and C defined in Section 6. The aim is to prove a statement like
Lemma 7. Observe that the formulas A, B, and C are used in
the proof of Lemma 7 only once: we need just Proposition 3 to be
true. Therefore for our purposes it is sufficient to modify A, B, and
C so that Proposition 3 remains to be true for resulting formulas.
Finally, observe that the key condition in the proof of Proposition 3
is Lemma 6.

8.1 Fragments with EU

Let AR be the dual modality for EU ; we define it as the following
abbreviation:

(φARψ) = ¬(¬φEU¬ψ),

for any formulas φ and ψ. Observe that, for any φ,

AGφ↔ ⊥ARφ ∈ QCTL;

EFφ↔ ⊤EUφ ∈ QCTL,

and therefore we may use AG and EF as corresponding abbrevia-
tions. Then, we may define all formulas A1, . . . , A8, B, and C but
not A9 because A9 contains the modality AX. Instead of A9 we
take the formula A′

9:

A′
9 = ∀x∀y

(
L(x) ∧ x ≺1 y → L(y)AR(L(x) ∨ L(y))

)
.

Let A′ = AG(A1 ∧ . . . ∧A8 ∧A′
9).

Proposition 4. The formula A′ ∧B ∧ C is QCTL-satisfiable.

Proof. It is sufficient to check that (M0, w0) |= AGA′
9 and use

Lemma 1. 2

Let us use the notations introduced in Section 6 where M is a
model and w∗ is a world in it such that (M, w∗) |= A′ ∧ B ∧ C. It
is clear that Lemmas 2, 3, and 4 are true. Lemma 5 is not true but
we will prove a similar statement.

Lemma 8. Let w ∈W , k ∈ N, and w∗Rkw. Then Lw(am) is true,
for some m ∈ {0, . . . , k}.
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Proof proceeds by induction on k. If k = 0 then with the same
argumentation as in Lemma 5 we obtain Lw∗

(a0).
Let the statement is true for k; we prove it for k+1. Let w∗Rk+1w.

Then there is u ∈ W such that w∗Rku and uRw. By induction
hypothesis, there is m ∈ {0, . . . , k} such that Lu(am) holds. By
Lemma 4, we have am ≺u

1 am+1. Then, from (M, u) |= A′
9 and uRw

we obtain Lw(am) or Lw(am+1). 2

The next lemma is like Lemma 6.

Lemma 9. Let b ∈ D(w∗). Then b ≈w∗
am, for some m ∈ N.

Proof. Because of (M, w∗) |= C, there is w ∈W such that w∗Rkw,
for some k ∈ N, and Lw(b) is true. By Lemma 8, Lw(am) is true, for
some m ∈ {0, . . . , k}. Then, from (M, w) |= A8 we obtain b ≈w am
and, by Lemma 4, we obtain b ≈w∗

ak. 2

From Lemma 9 we obtain a statement like Proposition 3.

Proposition 5. The structures ⟨Dw∗
,≺w∗⟩ and ⟨N, <⟩ are iso-

morphic.

Proof. Follow to the proof of Proposition 3. 2

Let φ be some closed classical first-order formula. We define
Emb′(φ):

Emb′(φ) = A′ ∧B ∧ C ∧ Congr(φ) → T (φ).

Lemma 10. φ ∈ QCLfin ⇐⇒ Emb′(φ) ∈ QCTL.

Proof proceeds with the same argumentation as the proof for
Lemma 7; the difference is in use Proposition 5 instead of Proposi-
tion 3. 2

Corollary 3. The logic QCTL � {EU} is not recursively enu-
merable.
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8.2 Fragments with AF

Observe that we may use the modality EG as an abbreviation be-
cause EGφ↔ ¬AF¬φ ∈ QCTL, for any formula φ.

Let p be a propositional variable (i. e., some 0-ary predicate let-
ter). We need it to define ‘heredity’ formulas:

A′′
6 = ∀x∀y

(
(x ≺1 y ↔ AF (x ≺1 y ∧ p)) ∧
(x ≺1 y ↔ AF (x ≺1 y ∧ ¬p))

)
;

A′′
7 = ∀x∀y

(
(x ̸≈ y ↔ AF (x ̸≈ y ∧ p)) ∧
(x ̸≈ y ↔ AF (x ̸≈ y ∧ ¬p))

)
.

Let us also define A′′
9:

A′′
9 = ∀x∀y

(
L(x) ∧ x ≺1 y → AFL(y)

)
∧

∀y
(
AFL(y) → ∃x(x 4 y ∧ L(x))

)
where x 4 y is an abbreviation for (x ≺ y ∨ x ≈ y). Finally, let

A′′ = A1 ∧ . . . ∧A5 ∧A′′
6 ∧A′′

7 ∧A8 ∧A′′
9;

B′′ = ∃x
(
L(x) ∧EG(A′′ ∧ ¬∃y(y ≺ x))

)
;

C ′′ = ∀xAFL(x).

Proposition 6. The formula B′′ ∧ C ′′ is QCTL-satisfiable.

Proof. Let M0 be the model defined on page 6. We extend I0 on
p so that

(M0, wi) |= p ⇐⇒ i = 2k, for some k ∈ N,

i. e., we put p to be true exactly in ‘even’ worlds.
Then (M0, w0) |= B′′ ∧ C ′′; corresponding check is left to the

reader. 2

Let us use again the notations introduced in Section 6.
Let M = ⟨W,R,D, I⟩ be a model and w∗ be a world in it such

that (M, w∗) |= B′′ ∧ C ′′.
Since (M, w∗) |= B′′, there are a0 ∈ D(w∗) and a path π starting

in w∗ such that
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• Lπ0(a0) is true;

• b ≺πk a0 does not true, for any k ∈ N and for any b ∈ D(πk);

• (M, πk) |= A′′, for any k ∈ N.

Lemma 11. The relation ≈πk is a congruence with respect to the
relation ≺πk , for any k ∈ N.

Proof immediately follows from (M, πk) |= A1 ∧A2. 2

Because of Lemma 11, we again may define congruence classes
but just for worlds in the path π.

Lemma 12. The relation ≺πk is a strict linear order on Dπk and
≺πk

1 is the successor relation on Dπk with respect to ≺πk , for any
k ∈ N.

Proof immediately follows from (M, πk) |= A3 ∧A4. 2

From the condition (M, π0) |= A5 it follows that there are
a1, a2, a3, . . . ∈ D(π0) such that

a0 ≺π0 a1 ≺π0 a2 ≺π0 a3 ≺π0 . . .

and equivalence classes generated by a0, a1, a2, a3, . . . are pairwise
different.

Lemma 13. For any k ∈ N and for any a, b ∈ D(π0),

a ≺π0
1 b =⇒ a ≺πk

1 b;

a ̸≈π0 b =⇒ a ̸≈πk b.

Proof. Let a ≺π0
1 b, for some a, b ∈ D(π0). We prove that a ≺πk

1 b
by induction on k. If k = 0 then the statement is trivial.

Let a ≺πk
1 b and let α be an interpretation of variables in D(πk)

such that α(x) = a, α(y) = b. There are two possible cases:
(M, πk) |=α p and (M, πk) ̸|=α p.

Case (M, πk) |=α p. Suppose a ̸≺πk+1

1 b. Since (M, πk+1) |= A6,
we have (M, πk+1) ̸|=α AF (x ≺ y ∧ ¬p). This means that there
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is a path σ starting in πk+1 such that (M, σm) ̸|=α (x ≺ y ∧ ¬p),
for any m ∈ N. We define the path τ : τ0 = πk and τn+1 = σn,
for any n ∈ N; i. e., τ starts in πk and then goes along σ. Since
(M, τ0) |=α p, we have (M, τ0) ̸|=α (x ≺ y ∧ ¬p) and from the same
condition for all states in σ we obtain (M, τn) ̸|=α (x ≺ y ∧ ¬p),
for any n ∈ N. But then (M, τ0) ̸|=α AF (x ≺ y ∧ ¬p), i. e.,
(M, πk) ̸|=α AF (x ≺ y ∧ ¬p). Then, since (M, πk) |= A6, we have
(M, πk) ̸|=α x ≺ y, i. e., a ̸≺πk

1 b. But, by induction hypothesis, it
is not the case, hence the assumption a ̸≺πk+1

1 b is not true, and we
have a ≺πk+1

1 b.
Case (M, πk) ̸|=α p. We have (M, πk) |=α ¬p and with the same

argumentation (using p instead of ¬p and vice versa) we again obtain
a ≺πk+1

1 b.
Let a ≈π0

1 b, for some a, b ∈ D(π0). The proof that a ≺πk
1 b

proceeds by induction on k in the same way (with use of A7 instead
of A6); we left the details to the reader. 2

Lemma 14. Let k ∈ N. Then there is m ∈ {0, . . . , k} such that
Lπk(am) is true.

Proof proceeds by induction on k.
Let k = 0. Then we must prove that Lπ0(a0) is true; but we have

Lπ0(a0) to be true by choosing of a0.
Let the statement be true for k; we prove it for k + 1. By in-

duction hypothesis, we have Lπk(am), for some m ∈ {0, . . . , k}. Let
α be an interpretation of variables in πk such that α(x) = am,
α(y) = am+1. By Lemma 13, we have am ≺πk

1 am+1 and hence
(M, πk) |=α AFL(y) because (M, πk) |= A′′

9.
Suppose Lπk+1(a0), . . . , L

πk+1(ak+1) are not true. Then, in
particular, Lπk+1(a0), . . . , L

πk+1(am+1) are not true and hence
(M, πk+1) ̸|=α ∃x(x 4 y ∧ L(x)). Since (M, πk+1) |= A′′

9, we ob-
tain (M, πk+1) ̸|=α AFL(y). This means that there is a path σ
starting in πk+1 such that (M, σl) ̸|=α L(y), for any l ∈ N.

We define the path τ : τ0 = πk and τn+1 = σn, for any n ∈ N.
We claim (M, τn) ̸|=α L(y), for any n ∈ N. Indeed, it is the

case for any n ∈ N+ by the choice of σ. As for n = 0, we have
τ0 = πk and hence (M, τ0) |=α L(x). Supposing (M, τ0) |=α L(y),
we obtain (M, τn) |=α x ≈ y because (M, τ0) |= A8. But then
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am ≈πk am+1. From Lemmas 11 and 12 we obtain am ̸≺πk am+1,
in particular, am ̸≺πk

1 am+1, but this is impossible by Lemma 13.
Thus (M, τ0) ̸|=α L(y).

Since (M, τn) ̸|=α L(y) holds for any n ∈ N, we obtain
(M, τ0) ̸|=α AFL(y), i. e., (M, πk) ̸|=α AFL(y), but this is not
so. Hence our assumption is not true, therefore at least one of
Lπk+1(a0), . . . , L

πk+1(ak+1) is true. 2

Now we are ready to prove a lemma that is similar to Lemmas 6
and 9. Recall that π0 = w∗.

Lemma 15. Let b ∈ D(w∗). Then b ≈w∗
am, for some m ∈ N.

Proof. Since (M, w∗) |= C, in any path starting in w∗ there
is a world w such that Lw(b) is true. In particular, this is true
for the path π. Hence Lπk(b) is true, for some k ∈ N. Then,
by Lemma 15, there is m ∈ {0, . . . , k} such that Lπk(am) is true.
Since (M, πk) |= A8, we have b ≈πk am. By Lemma 13, we obtain
b ≈π0 am, i. e., b ≈w∗

am. 2

Proposition 7. The structures ⟨Dw∗
,≺w∗⟩ and ⟨N, <⟩ are iso-

morphic.

Proof. Follow to the proof of Proposition 3. 2

Let φ be some closed classical first-order formula. We define
Emb′′(φ):

Emb′(φ) = B′′ ∧ C ′′ ∧ Congr(φ) → T (φ).

Lemma 16. φ ∈ QCLfin ⇐⇒ Emb′′(φ) ∈ QCTL.

Proof proceeds with the same argumentation as the proof of
Lemma 7; the difference is in use Proposition 7 instead of Proposi-
tion 3. 2

Corollary 4. The logic QCTL � {AF } is not recursively enu-
merable.
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9 Corollaries
First of all, now we are able to give a proof for Theorem 1. Indeed,
let M be a set of modalities as in Theorem 1. If M ⊆ {AX,EX}
or M ⊆ {AG,EF } then the logic QCTL � M is recursively enu-
merable and even finitely axiomatizable by Proposition 1. Suppose
M ̸⊆ {AX,EX} and M ̸⊆ {AG,EF }. Then at least one of the
following conditions holds:

• M contains AX or EX and M contains AG or EF ;

• M contains EU ;

• M contains AU , or AF , or EG.

In every of these cases the logic QCTL � M is not recursively
enumerable by Corollaries 2, 3, and 4.

Now we give some other corollaries of Theorem 1 and its proof.
Below let M ⊆ {AX,EX,AG,EG,AF ,EF ,AU ,EU}.

9.1 Finite axiomatizability

Note that any recursively enumerable fragment we consider here is
also finitely axiomatizable; thus we have the following statement.

Corollary 5. The logic QCTL � M is finitely axiomatizable if
and only if M ⊆ {AX,EX} or M ⊆ {AG,EF }.

We make a remark. From Theorem 1 and Corollary 5 it follows
that a fragment QCTL �M is recursively enumerable if and only if
it is finitely axiomatizable. In general, recursive enumerability of a
logic is not equivalent to its finite axiomatizability; it is equivalent
just to its recursive axiomatizability. In our case such criterion is
possible maybe because of finite number of fragments we consider.

Now let us turn to the other side of axiomatizability. We mean
completeness.

9.2 Kripke completeness

Recall that a logic L is called Kripke complete if there is a class C of
(predicate) Kripke frames such that L = {φ : C |= φ} where C |= φ
means φ is true in any frame in C.
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Any fragment QCTL � M is Kripke complete by its definition;
so, the question about Kripke completeness makes sense just for
logics defined in other ways. Here we concern calculi.

We specify what we understand under a calculus. We assume a
calculus to be defined by means of two sets: a set A of axioms and
a set R of inference rules. These sets assumed to be recursively
enumerable, moreover any inference rule assumed to be effective,
i. e., as an algorithm computing the resulting formula. Of course,
finite axiomatizations provides us with calculi.

Note that the set of all derivable formulas in a calculus (in our
understanding) is recursively enumerable: to get an algorithm enu-
merating derivable formulas we may use an algorithm constructing a
consequence of all derivations. The last algorithm exists because of
algorithmic conditions we claim for the sets of axioms and inference
rules.

Let R be a set of inference rules, X be a set of formulas. We de-
note by CR(X) the least set of formulas containing X and closed un-
der inference rules in R, generalization, modus ponens, and substi-
tution (in an appropriate language). Let also X⊕RY = CR(X∪Y ).

Let L be a logic (a set of formulas). Let us call a set R of inference
rules L-admissible if CR(L) ⊆ L.

Let us call a set M of modalities quite expressive if the modal-
ities in at least one of the sets {AX,AG}, {EU}, {AF } can be
expressed via the ones in M (maybe with use of the connectives).

Corollary 6. Let M be a quite expressive set of modalities, S be a
recursively enumerable set of propositional formulas in the language
of CTL � M such that S ⊆ CTL � M , and R be a QCTL-
admissible set of inference rules. Then the logic QCL ⊕R S is not
Kripke complete.

Proof. We give just a sketch of a proof. Let us use the denotation
QS = QCL ⊕R S. The logic QS may be viewed as a calculus
with the axiom set QCL∪S, therefore it is recursively enumerable.
Suppose it is Kripke complete. Then there is a class C of Kripke
frames such that QS = {φ : C |= φ}.

First of all observe that (modulo modality equivalence) at least
one of the formulas A∧B ∧C, A′ ∧B ∧C, B′′ ∧C ′′ is a formula in
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the language of QS; this is so because M is quite expressive. Let
us denote it by Φ. We claim

φ ∈ QCLfin ⇐⇒ Φ ∧ Congr(φ) → T (φ) ∈ QS,

for any closed classical first-order formula φ.
Suppose φ ̸∈ QCLfin. Then there is a classical model S = ⟨S, J⟩

such that S is finite and S ̸|= φ; we may assume S = {0, . . . , n},
for some n ∈ N.

Observe that ¬Φ ̸∈ QS. Indeed, it follows from Proposi-
tions 2, 4, and 6 that ¬Φ ̸∈ QCTL. But QCL ⊂ QCTL and
S ⊆ CTL � M ⊂ QCTL, therefore QS ⊆ QCTL because R is
QCTL-admissible.

Since ¬Φ ̸∈ QS, there is a frame F(D) = ⟨W,R,D⟩ such that
F(D) ∈ C (or F ∈ C where F = ⟨W,R⟩) and F(D) ̸|= ¬Φ. Then
there is a model M = ⟨W,R,D, I⟩ and a world w∗ ∈ W such that
(M, w∗) ̸|= ¬Φ, i. e., (M, w∗) |= Φ.

It follows from Propositions 6, 5, and 7 that the structures
⟨Dw∗

,≺w∗⟩ and ⟨N, <⟩ are isomorphic, i. e., there is an isomor-
phism f : N → Dw∗ for the structures. Let us consider the model
M′ = ⟨W,R,D, I ′⟩ where I ′ is defined as I with the only difference
for predicate letters occurring in φ: if P is m-ary letter occurring
in φ and b1, . . . , bm ∈ D(w∗) then we put

⟨b1, . . . , bm⟩ ∈ I ′(w∗, P ) � there are k1, . . . , km ∈ S such
that ⟨k1, . . . , km⟩ ∈ J(P )
and bi ∈ f(ki), for any
i ∈ {1, . . . ,m}.

Then we obtain (M′, w∗) ̸|= Φ ∧ Congr(φ) → T (φ), and hence
Φ ∧ Congr(φ) → T (φ) ̸∈ QS; the details are left to the reader.

Now suppose Φ ∧Congr(φ) → T (φ) ̸∈ QS. Since QS ⊆ QCTL,
we have Φ ∧ Congr(φ) → T (φ) ̸∈ QCTL, and hence φ ̸∈ QCLfin

by Lemmas 6, 9, and 15.
But then QS is not recursively enumerable, and we have a con-

tradiction. Hence QS is not Kripke complete. 2
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9.3 The case of constant domains
Kripke frame F(D) = ⟨W,R,D⟩ is said to be a frame with constant
domains if

wRw′ =⇒ D(w) = D(w′),

for any w,w′ ∈W . The constant domain condition means that new
elements do not appear when we go from one state to another, i. e.,
any element we may deal with in some future state is available in
the current state, too.

Let QCTLcd be a logic of serial Kripke frames with constant
domains. Note that the propositional fragment of QCTLcd is the
logic CTL, i. e., QCTLcd as well as QCTL is a conservative first-
order extension of CTL. Here we put and answer the following
question: do the presented results remain to be true if we replace
QCTL with QCTLcd? And the answer is ‘yes, of course’.

Indeed, it is sufficient to observe that the formulas A ∧ B ∧ C,
A′ ∧B ∧C, and B′′ ∧C ′′ are satisfiable in some models based on a
serial frame with constant domains; see the proofs of Propositions 2,
4, and 6.

9.4 More simple fragments
We make remarks about fragments with restrictions on predicate
letters. First of all, observe that it is possible to define ≈ and ≺
via L. So, for example in w∗ (see Section 6)

x ≈ y means AG(L(x) ↔ L(y));

x ≺ y means AF (L(x) ∧ ¬L(y) ∧AFL(y)).

As for the QCLfin, its fragment with a binary predicate letter P is
not recursively enumerable. It is known, see [8], that a binary pred-
icate letter may be simulated with two unary letters: for example
P (x, y) may be simulated with EX(P ′(x) ∧ P ′′(y)). This means
that three unary letters are sufficient to prove that the correspon-
dent fragment of QCTL is not recursively enumerable.

Moreover even two unary letters are enough. It is known that
the theory of finite models with symmetric irreflexive binary re-
lation is not recursively enumerable; see [9]. But if a letter P
corresponds to such relation then P (x, y) may be simulated with
EX((P ′(x) ∧ ¬P ′(y)) ∨ (¬P ′(x) ∧ P ′(y))).
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As for number of individual variables, it seems to be truthful that
three ones are enough. But in view of [7], we think that even two
variables are enough.

10 Conclusion remarks
Let M be some quite expressive set of modalities. Suppose we are
asked: why the fragment QCTL � M is not recursively enumer-
able? As a possible answer we may say that this is because one may
simulate positive integers using the language of the fragment. But
why one may do this?

To answer the question let us turn to the notion of path. A path
π in a frame F = ⟨W,R⟩ is an infinite consequence of worlds
π0, π1, π2, . . . with the condition wkRwk+1, for any k ∈ N. This
means that any path is a map from N into W . Thus, we have posi-
tive integers as paths. Some modalities allow us to ‘catch’ them
because of their definition in Kripke models.

But it is not the case for the pairs AX,EX and AG,EF . This is
so because these modalities are quite ‘simple’: accessibility relations
for them are first-order definable. For example, for AX we need
just seriality of R. The modality AG seems to be more complicated.
It corresponds to the reflexive and transitive closure of R which is
not first-order definable via R. And indeed, if we use AX and AG
simultaneously then we are able to ‘catch’ positive integers. But if
we use AG only then we ‘lose’ R and, in fact, we have just some
reflexive and transitive accessibility relation.
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