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ABSTRACT. In this paper the procedure is presented that allows
to determine in finite number of steps if consequence relations in
two finite-valued logical matrices for propostional language L are
equal.
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In his paper ‘A test for the equality of truth-tables’ [2], J. Kalicki
has described a general method for testing the equality of the classes
of tautologies in different finite-valued matrices. Below I present
a generalization of Kalicki’s method which allows to test whether
the consequence relations in two finite-valued logical matrices
are equal.

First, the question of equality of consequence relations in two ar-
bitrary matrices will be reduced to the question of the properties of
a single matrix. This matrix will be obtained from initial matrices
via the operation of product, but it will have four classes of truth-
values instead of the standard two (designated and non-designated).
On the basis of these four classes I will define several consequence
relations. The properties that these relations display in the product
matrix will define if two initial matrices are equal in terms of conse-
quence relation. Then I will show that it is sufficient to consider a
finite set of formulas to investigate the properties in question, and
that therefore a finite number of steps is required to determine if
consequence relations are equal in two finite-valued matrices.

Let us begin with some necessary definitions.
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DEFINITION 1. A logical matrix is a structure M =< V, F, D >,
where V' is the set of truth-values, F' is a set of functions on V called
basic functions, and D is a designated subset of V.

In this paper we will only consider the logical matrices where V'
is finite.

If for any n it is true that 21 contains as much n-ary elements of
F' as there are n-ary connectives in some propositional language L,
M is a logical matrix for L. In that case we can establish a one-to-
one correspondence between the elements of ' and the connectives
of L, and define a valuation of a formula in 9.

DEFINITION 2. A valuation v of formula A in 91 is a homomorphism
of L in < V, F > such that

1. if A is a propositional variable, then v(A) € V;

2. if Ay, Ag, -+, A, are formulas, and C is an n-ary connective of
L, then v(C(A1, Ag, -+ , Ap)) = fM(v(41),v(A2), -+ ,v(Ay)),

where f™ is a function from F' corresponding to C.

The definition of consequence relation in 997 is a standard one.

DEFINITION 3. T' E (91)B iff there is no valuation v in 9%, such
that v[I'] € D(MM) (i.e. every formula from I" assumes a truth-value
designated in 9), and v(A) ¢ D(IM).

Let us denote as C'(9N) a set of ordered pairs < I', B >, such that
I is a set of formulas, B is a formula, and I" F (91) B. Now we will

define the equality of consequence relations in two arbitary matrices
for L.

DEFINITION 4. Let 2 and B be the matrices for L. The conse-
quence relations in 2 and B are equal iff C(2A) = C(*B).

Now we will make the transition from two matrices to one by
applying the product operation. If 2 and B are the matrices for
L, a one-to-one correspondence between the elemnts of their sets
of basic functions can be established. This allows us to give the
following definition.

DEFINITION 5. A product of matrices 2l and 95 is a matrix € =
A ® B, such that
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e V(€) is a Cartesian product of V() and V (B);

e for each pair pair of mutually corresponding k-ary basic

functions f*(x1,29, - ,x) from A and ¢¥(y1,y2, -, yk)
from B there is one and only one basic operation h* from
¢, and h¥(< z1,y1 >, < To,yp >, < TpoYp >) =
< R, mk), 0 (v, k) >

This is a standard product operation. However, the truth-values
in ¢ will be divided into four classes!:

o < ux;,y; >€ w(Q) iff z; € D(A) and y; € D(B);
o <y >€ &(€) iff 2 € D(A) and y; ¢ D(B);
o <ux;,y; >€&(Q) iff z; ¢ D(A) and y; € D(B);
o <ux;,y; >€ ¢(€) iff x; ¢ D(A) and y; ¢ D(B).

I will now consider two definitions of consequense relation based
on these four classes, Fy and Fn.

DEFINITION 6. I' Fy (€)B iff there is no valuation w in €, such
that w[I'] C w(€), and w(A) € ¢(C).
LEMMA 1. T E, (€)Biff TE (A)B or T F (B)B.

PRrROOF. (i) Let I' Fy (€)B, and ' ¥ (A)B, and I' ¥ (B)B. Then
there exists a valuation v* in 2, such that v*[I'] C D(2) and v*(A) ¢
D(2l), and there exists a valuation v* in 9B, such that v*[I'] C D(*8)
and u*(A) ¢ D(*B). For every v and u there is a mapping w of the
propositional variables of L on V() x V(8), such that w(px) =<
v(pk),u(pr) >, where pi is a propositional variable. Obviously,
every such w is a valuation in €. By definition of €, w* obtained from
v* and u* is such a valuation that w*[I'] C w(€), and w*(A) € ¢(€).
That contradicts our assumption.

(ii) Let T ¥y (€)B, and ' F (A)B or I' E (*8)B. Then there is a
valuation w* in €, such that w*[I'] C w(€), and w*(A) € ¢(€). For

IThis is essentially a distribution introduced by Kalicki [2], but he only
needed three classes, so elements of £(€) and ¢'(€) were assigned to the same
class.
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every valuation w in € there is the following valuation v in 2: if
w(pk) =< x,y; >, then v(py) = z;. By definition of €, v* obtained
this way from w* is such a valuation in 2 that v*[['] C D(2) and
v*(A) ¢ D(2A). The reasoning for valuation u* in ‘B is analogous,
and leads to the contradiction. O

DEFINITION 7. I' En (€)B iff all three of the following conditions
are fulfilled:

e there is no valuation w in €, such that w[I'] C w(€), and

w(A) ¢ w(T);

e there is no valuation w in €, such that w[['] C w(<) U (T),
and w(A) ¢ w(€) UE(Q);

e there is no valuation w in €, such that w[l'] C w(€) U (),
and w(A) ¢ w(€) U (€).

LEMMA 2. T'En (€)Biff T E (A)B and T F (B)B.

PRrROOF. (i) Let I' Fn (€)B, and I' # (A)B, and I' ¥ (*8)B. The
reasoning is analogous to the one in Lemma 1.

(ii) Let ' En (€)B, and either I' # (A)B or I' ¥ (B)B. Suppose
I'E (A)B and I' F (B)B. Then there is a valuation v* in 2, such
that v*[I'] € D() and v*(A) ¢ D(2). Now we have to consider
two possibilities.

(7i.1) There is a valuation w* in B, such that v*[I'] C D(B)
and u*(A) € D(®B). In this case, from v* and u* we can obtain a
corresponding valuation w* in € (see Lemma 1), such that w*[I'] C
w(€), and w*(A) € £(€). But then I' ¥ (€)B, which contradicts
our assumption.

(i.2) For every valuation u in B, u[I'] ¢ D(B). Let u’ be such a
valuation that «/[['] ¢ D(%B), and u/(A) ¢ D(B). The correspond-
ing valuation w’ in € obtained from v* and v’ in the same way as in
Lemma 1 will be such that «'[I'] C £(€), and w'(A) € ¢(€). Let u”
be such a valuation that «”[I'] ¢ D(B), and u”(A) € D(B). The
corresponding valuation w” in € obtained from v* and u” will be
such that w”[I'] C £(€), and w”(A) € £'(€). Both cases lead us to
the contradiction with the assumption that I Fn (€)B.
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The reasoning for I' F (A)B and I' ¥ (B) B is analogous.

(iii) Let I' Fq (€)B,and I' E (A)B, and I' F (B)B. If I' ¥ (€)B,
three cases are possible:

(11i.1) There is a valuation w in €, such that w[I'] C w(€), and
w(4) ¢ w(©);

(#73.2) There is a valuation w in €, such that w[['] C w(€)U(T),
and w(A) ¢ w(€) UE(T);

(111.3) There is a valuation w in €, such that w[['] C w(€)UE' (),
and w(A) ¢ w(€) U (C).

The reasining for all three cases is the same. We obtain from
w the corresponing valuations v in 2 and « in B in the same way
as we did in Lemma 1. Due to the properties of w described in
(i13.1)—(111.3), either v, or u, or both of them will be such that they
will lead to the contradiction with the assumption that I' F (2)B
and I' F (B)B. O

u) = CRYUC(B). From
2A) N ). Also, we have
C

From Lemma 1 we have that C(€,F
CRNC(B
() N C(B). Therefore,

Lemma 2 we have that C(€,Fq) =
that C(A) = C(®B) iff C(A) U C(B) =
CR)=C(®) iff C(¢,Fy) = C(C€,En).

Now let us consider another consequence relation.

DEFINITION 8. T'E* (€)B iff either

e there is no valuation w in €, such that w[I'] C w(<), and

w(A) ¢ w(Q),

e and there is no valuation w in €, such that w[I'] C w(€)UL(T),
and w(A) ¢ w(€)U(C),

e and there is no valuation w in €, such that w[I'] C w(€)UE'(€),
and w(A) ¢ w(€) UE'(Q),

e or there is a valuation w in €, such that w[I'] C w(€), and

w(A) € $(€).

LEMMA 3. C(€,Fy) = C(€,Fq) iff T' E* (€)B for each set of for-

mulas I' and each formula B.
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Proor. If C(€, k) = C(€,Eq), for each I' and B it is true that
either I' Fn (€)B or I' ¥ (€)B. Both cases lead to I' F* (€)B. Now
let us assume that I' F* (€) B for some arbitrary I" and B. Then (i)
for every evaluation w in €, if w[['] C w(€) then w(A) € w(€), if
w[['] Cw(€)UE'(€), then w(A) € w(€)UE'(€), if w[['] C w(€)NE'(E),
then w(A) € w(€) NE(€), or (ii) there is at least one valuation in
¢, such that all formulas from I' assume a truth value from w(€),
and B assumes a value from ¢(€). In the first case I' Fn (€)B. In
the second case I' ¥, (€)B. Therefore C(€,F,) = C(C,Fn). O

Below, the number of formulas that need to be considered will be
narrowed down to a finite set. I will use the method proposed by
J. Kalicki in [1] with necessary modifications.

LEMMA 4. For each matrix €,,, where m is the number of the
elements of V(C), the following is true: if for each pair I' and B
that contains ¢ < m different variables I" F* (&€,,)B, then for each
pair A and E that contains m + ¢(t = 0,1, --) different variables
AFE* (€,)E.

PRrROOF. Let us use the induction by ¢t. For ¢ = 0 it is obvious
that for each I' and B that contains ¢ < m different variables
I' E* (€,,)B, then for each pairA and E that contains m differ-
ent variables A F* (€,,)E.

Let us assume that the theorem is true for ¢ < k and prove it
for t = k 4+ 1. Let there exist A and E that contain m + k + 1
different variables, and A E* (&€,,)E. Then there exists a valua-
tion wp in €, that maps the variables p1,p2, - , pPm+k+1 On values
T1,T2, " , Tmyk+1 respectively, such that either (i) wo[A] C w(€),
and wo(F) ¢ w(), or (i) wolA] C w(€) U &(€), and w(E) ¢
w(C)UE(C), or (iii) wo[A] C w(€)UE(€), and w(E) ¢ w(€)U'(€).

Let us consider (i). Due to the fact that in &,, there is m
different truth-values in total, there will be at least two i1 # is
among ¢ = 1,2,--- ,m + k + 1, such that z;;, = =z;,. Now
let us consider A’ and E’, obtained from A and D by re-
placement of all instances of p;, with p;. It is clear that
wolA'] C w(€y,) and wo(E') ¢ w(€y,). Because A’ and E’ con-
tain m + k different variables, according to the inductive assump-
tion, A’ E* (&,,)E’. Therefore, there exists a valuation w* in
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€., which maps the variables p1,p2, -+, Piy_1sDisy1s " s Pmtk+1 ON
the values y1,y2, =+, Yio_1s Yioy1s " * > Ym+k+1 Tespectively, such that
w*[A'] € w(€,,) and w*(E’) € ¢(€y,). In this case we can con-
struct a valuation w**, which maps the variables p1,p2, - , Pm+k+1

on the values y1,y2, -, Yio_1s Yirs Yioy1>*** » Ym+k+1 Tespectively. It
is clear that w**[A] C w(¢&,,) and w**(E) € ¢(&,;,). But then

A F* (€,)E, which contradicts our assumption.
The reasoning for (ii) and (iii) is analogous. O

For m different variables there is & = m™ different valuations
vy, U2, U in €. We can assign to each variable p;(1 < i <
m) a unique value-sequence |p;| =< x1, %2, -,z >, where z; =
u(pi)(1 <1< k).

Now let us construct the following sequence of the classes of for-
mulas:

e The elements of C'Ly are the variables p1,po,- -, pm exclu-
sively;

e to a class C'Ly; 1 belong all formulas that can be constructed
by means of one connective, an element of class C'L;, and (if
needed) elements of C'L,<;.

For each formula B from C'L,, we can calculate the corresponding
value-sequence |B| =< yi1,y2, -+, Yk >, where y;(1 < j < k) is
obtained from j-th elements of sequences assigned to the variables
included in B. Let us denote the set of value-sequences for elements
of Cl,, as |Cl,|. Because the sequences in question consist of k
elements, and the number of truth-values equals m, in total there
is m* possible sequences. Therefore, there is a finite ng < m*, such
that |C' Ly, | contains no value-sequence which is not also the element
of some |CLy<n,|.

LEMMA 5. The value-sequence of any formula B € CL,,~, is iden-
tical to some element of |C Ly<n,|.

PrOOF. Let B € CL,,+1. By definition of CLy,+1, formula B
consists of the main connective, at least one formula from CL,,,
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and probably elements of C'L,,, «p,. By definition of ng, each value-
sequence from |C'Ly,| is also present in some |C Ly, <p,|- Therefore,
by definition of |CL|, there is a set [C'Lyqq(;,j)+1|, Which contains
the value-sequence identical to |B|. Because n; < ng and n; < no,
we have that max(n;,n;) +1 < ng, |B| € |CLp<n,|. From that,
according to the definition of ng, we obtain that |B| € |CLy<p,)-
The theorem is proved for C'L,,+1. The generalization for CLy~np,
is obvious. O

So the set |CL1|U|CLa|U---U|CLy,| contains all value-sequences
possible in €, for formulas that contain no more than m different
variables. From this fact and Lemma 4 it follows that I' ¥* (&,,)B
for each I and B iff A F* (&,,,)E for every A and E that consist
exclusively of the elemnts of CL; UCLy U ---UCLy,.

This concludes the construction of the procedure for testing if
C() = C(B) for two arbitrary finite-valued matrices 2 and B for
some propositional language L.
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