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abstract. In this paper the procedure is presented that allows
to determine in finite number of steps if consequence relations in
two finite-valued logical matrices for propostional language L are
equal.
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In his paper ‘A test for the equality of truth-tables’ [2], J. Kalicki
has described a general method for testing the equality of the classes
of tautologies in different finite-valued matrices. Below I present
a generalization of Kalicki’s method which allows to test whether
the consequence relations in two finite-valued logical matrices
are equal.

First, the question of equality of consequence relations in two ar-
bitrary matrices will be reduced to the question of the properties of
a single matrix. This matrix will be obtained from initial matrices
via the operation of product, but it will have four classes of truth-
values instead of the standard two (designated and non-designated).
On the basis of these four classes I will define several consequence
relations. The properties that these relations display in the product
matrix will define if two initial matrices are equal in terms of conse-
quence relation. Then I will show that it is sufficient to consider a
finite set of formulas to investigate the properties in question, and
that therefore a finite number of steps is required to determine if
consequence relations are equal in two finite-valued matrices.

Let us begin with some necessary definitions.
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Definition 1. A logical matrix is a structure M =< V,F,D >,
where V is the set of truth-values, F is a set of functions on V called
basic functions, and D is a designated subset of V .

In this paper we will only consider the logical matrices where V
is finite.

If for any n it is true that M contains as much n-ary elements of
F as there are n-ary connectives in some propositional language L,
M is a logical matrix for L. In that case we can establish a one-to-
one correspondence between the elements of F and the connectives
of L, and define a valuation of a formula in M.

Definition 2. A valuation v of formulaA in M is a homomorphism
of L in < V,F > such that

1. if A is a propositional variable, then v(A) ∈ V ;

2. if A1, A2, · · · , An are formulas, and C is an n-ary connective of
L, then v(C(A1, A2, · · · , An)) = fn(v(A1), v(A2), · · · , v(An)),
where fn is a function from F corresponding to C.

The definition of consequence relation in M is a standard one.

Definition 3. Γ � (M)B iff there is no valuation v in M, such
that v[Γ] ⊆ D(M) (i.e. every formula from Γ assumes a truth-value
designated in M), and v(A) /∈ D(M).

Let us denote as C(M) a set of ordered pairs < Γ, B >, such that
Γ is a set of formulas, B is a formula, and Γ � (M)B. Now we will
define the equality of consequence relations in two arbitary matrices
for L.

Definition 4. Let A and B be the matrices for L. The conse-
quence relations in A and B are equal iff C(A) = C(B).

Now we will make the transition from two matrices to one by
applying the product operation. If A and B are the matrices for
L, a one-to-one correspondence between the elemnts of their sets
of basic functions can be established. This allows us to give the
following definition.

Definition 5. A product of matrices A and B is a matrix C =
A⊗B, such that
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• V (C) is a Cartesian product of V (A) and V (B);

• for each pair pair of mutually corresponding k-ary basic
functions fk(x1, x2, · · · , xk) from A and gk(y1, y2, · · · , yk)
from B there is one and only one basic operation hk from
C, and hk(< x1, y1 >,< x2, y2 >, · · · , < xk, yk >) =
< fk(x1, x2, · · · , xk), gk(y1, y2, · · · , yk) >.

This is a standard product operation. However, the truth-values
in C will be divided into four classes1:

• < xi, yj >∈ ω(C) iff xi ∈ D(A) and yj ∈ D(B);

• < xi, yj >∈ ξ(C) iff xi ∈ D(A) and yj /∈ D(B);

• < xi, yj >∈ ξ′(C) iff xi /∈ D(A) and yj ∈ D(B);

• < xi, yj >∈ ϕ(C) iff xi /∈ D(A) and yj /∈ D(B).

I will now consider two definitions of consequense relation based
on these four classes, �∪ and �∩.

Definition 6. Γ �∪ (C)B iff there is no valuation w in C, such
that w[Γ] ⊆ ω(C), and w(A) ∈ ϕ(C).

Lemma 1. Γ �∪ (C)B iff Γ � (A)B or Γ � (B)B.

Proof. (i) Let Γ �∪ (C)B, and Γ 2 (A)B, and Γ 2 (B)B. Then
there exists a valuation v∗ in A, such that v∗[Γ] ⊆ D(A) and v∗(A) /∈
D(A), and there exists a valuation u∗ in B, such that u∗[Γ] ⊆ D(B)
and u∗(A) /∈ D(B). For every v and u there is a mapping w of the
propositional variables of L on V (A) × V (B), such that w(pk) =<
v(pk), u(pk) >, where pk is a propositional variable. Obviously,
every such w is a valuation in C. By definition of C, w∗ obtained from
v∗ and u∗ is such a valuation that w∗[Γ] ⊆ ω(C), and w∗(A) ∈ ϕ(C).
That contradicts our assumption.

(ii) Let Γ 2∪ (C)B, and Γ � (A)B or Γ � (B)B. Then there is a
valuation w∗ in C, such that w∗[Γ] ⊆ ω(C), and w∗(A) ∈ ϕ(C). For

1This is essentially a distribution introduced by Kalicki [2], but he only
needed three classes, so elements of ξ(C) and ξ′(C) were assigned to the same
class.
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every valuation w in C there is the following valuation v in A: if
w(pk) =< xi, yj >, then v(pk) = xi. By definition of C, v∗ obtained
this way from w∗ is such a valuation in A that v∗[Γ] ⊆ D(A) and
v∗(A) /∈ D(A). The reasoning for valuation u∗ in B is analogous,
and leads to the contradiction. 2

Definition 7. Γ �∩ (C)B iff all three of the following conditions
are fulfilled:

• there is no valuation w in C, such that w[Γ] ⊆ ω(C), and
w(A) /∈ ω(C);

• there is no valuation w in C, such that w[Γ] ⊆ ω(C) ∪ ξ(C),
and w(A) /∈ ω(C) ∪ ξ(C);

• there is no valuation w in C, such that w[Γ] ⊆ ω(C) ∪ ξ′(C),
and w(A) /∈ ω(C) ∪ ξ′(C).

Lemma 2. Γ �∩ (C)B iff Γ � (A)B and Γ � (B)B.

Proof. (i) Let Γ �∩ (C)B, and Γ 2 (A)B, and Γ 2 (B)B. The
reasoning is analogous to the one in Lemma 1.

(ii) Let Γ �∩ (C)B, and either Γ 2 (A)B or Γ 2 (B)B. Suppose
Γ 2 (A)B and Γ � (B)B. Then there is a valuation v∗ in A, such
that v∗[Γ] ⊆ D(A) and v∗(A) /∈ D(A). Now we have to consider
two possibilities.

(ii.1) There is a valuation u∗ in B, such that u∗[Γ] ⊆ D(B)
and u∗(A) ∈ D(B). In this case, from v∗ and u∗ we can obtain a
corresponding valuation w∗ in C (see Lemma 1), such that w∗[Γ] ⊆
ω(C), and w∗(A) ∈ ξ′(C). But then Γ 2∩ (C)B, which contradicts
our assumption.

(ii.2) For every valuation u in B, u[Γ] /∈ D(B). Let u′ be such a
valuation that u′[Γ] /∈ D(B), and u′(A) /∈ D(B). The correspond-
ing valuation w′ in C obtained from v∗ and u′ in the same way as in
Lemma 1 will be such that w′[Γ] ⊆ ξ(C), and w′(A) ∈ ϕ(C). Let u′′

be such a valuation that u′′[Γ] /∈ D(B), and u′′(A) ∈ D(B). The
corresponding valuation w′′ in C obtained from v∗ and u′′ will be
such that w′′[Γ] ⊆ ξ(C), and w′′(A) ∈ ξ′(C). Both cases lead us to
the contradiction with the assumption that Γ �∩ (C)B.
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The reasoning for Γ � (A)B and Γ 2 (B)B is analogous.
(iii) Let Γ 2∩ (C)B, and Γ � (A)B, and Γ � (B)B. If Γ 2∩ (C)B,

three cases are possible:
(iii.1) There is a valuation w in C, such that w[Γ] ⊆ ω(C), and

w(A) /∈ ω(C);
(iii.2) There is a valuation w in C, such that w[Γ] ⊆ ω(C)∪ ξ(C),

and w(A) /∈ ω(C) ∪ ξ(C);
(iii.3) There is a valuation w in C, such that w[Γ] ⊆ ω(C)∪ ξ′(C),

and w(A) /∈ ω(C) ∪ ξ′(C).
The reasining for all three cases is the same. We obtain from

w the corresponing valuations v in A and u in B in the same way
as we did in Lemma 1. Due to the properties of w described in
(iii.1)–(iii.3), either v, or u, or both of them will be such that they
will lead to the contradiction with the assumption that Γ � (A)B
and Γ � (B)B. 2

From Lemma 1 we have that C(C,�∪) = C(A) ∪ C(B). From
Lemma 2 we have that C(C,�∩) = C(A) ∩ C(B). Also, we have
that C(A) = C(B) iff C(A) ∪ C(B) = C(A) ∩ C(B). Therefore,
C(A) = C(B) iff C(C,�∪) = C(C,�∩).

Now let us consider another consequence relation.

Definition 8. Γ �∗ (C)B iff either

• there is no valuation w in C, such that w[Γ] ⊆ ω(C), and
w(A) /∈ ω(C),

• and there is no valuation w in C, such that w[Γ] ⊆ ω(C)∪ξ(C),
and w(A) /∈ ω(C) ∪ ξ(C),

• and there is no valuation w in C, such that w[Γ] ⊆ ω(C)∪ξ′(C),
and w(A) /∈ ω(C) ∪ ξ′(C),

• or there is a valuation w in C, such that w[Γ] ⊆ ω(C), and
w(A) ∈ ϕ(C).

Lemma 3. C(C,�∪) = C(C,�∩) iff Γ �∗ (C)B for each set of for-
mulas Γ and each formula B.
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Proof. If C(C,�∪) = C(C,�∩), for each Γ and B it is true that
either Γ �∩ (C)B or Γ 2∪ (C)B. Both cases lead to Γ �∗ (C)B. Now
let us assume that Γ �∗ (C)B for some arbitrary Γ and B. Then (i)
for every evaluation w in C, if w[Γ] ⊆ ω(C) then w(A) ∈ ω(C), if
w[Γ] ⊆ ω(C)∪ξ′(C), then w(A) ∈ ω(C)∪ξ′(C), if w[Γ] ⊆ ω(C)∩ξ′(C),
then w(A) ∈ ω(C) ∩ ξ′(C), or (ii) there is at least one valuation in
C, such that all formulas from Γ assume a truth value from ω(C),
and B assumes a value from ϕ(C). In the first case Γ �∩ (C)B. In
the second case Γ 2∪ (C)B. Therefore C(C,�∪) = C(C,�∩). 2

Below, the number of formulas that need to be considered will be
narrowed down to a finite set. I will use the method proposed by
J. Kalicki in [1] with necessary modifications.

Lemma 4. For each matrix Cm, where m is the number of the
elements of V (C), the following is true: if for each pair Γ and B
that contains i ≤ m different variables Γ �∗ (Cm)B, then for each
pair ∆ and E that contains m + t(t = 0, 1, · · · ) different variables
∆ �∗ (Cm)E.

Proof. Let us use the induction by t. For t = 0 it is obvious
that for each Γ and B that contains i ≤ m different variables
Γ �∗ (Cm)B, then for each pair∆ and E that contains m differ-
ent variables ∆ �∗ (Cm)E.

Let us assume that the theorem is true for t ≤ k and prove it
for t = k + 1. Let there exist ∆ and E that contain m + k + 1
different variables, and ∆ 2∗ (Cm)E. Then there exists a valua-
tion w0 in Cm that maps the variables p1, p2, · · · , pm+k+1 on values
x1, x2, · · · , xm+k+1 respectively, such that either (i) w0[∆] ⊆ ω(C),
and w0(E) /∈ ω(C), or (ii) w0[∆] ⊆ ω(C) ∪ ξ(C), and w(E) /∈
ω(C)∪ ξ(C), or (iii) w0[∆] ⊆ ω(C)∪ ξ′(C), and w(E) /∈ ω(C)∪ ξ′(C).

Let us consider (i). Due to the fact that in Cm there is m
different truth-values in total, there will be at least two i1 ̸= i2
among i = 1, 2, · · · ,m + k + 1, such that xi1 = xi2 . Now
let us consider ∆′ and E′, obtained from ∆ and D by re-
placement of all instances of pi2 with pi1 . It is clear that
w0[∆

′] ⊆ ω(Cm) and w0(E
′) /∈ ω(Cm). Because ∆′ and E′ con-

tain m + k different variables, according to the inductive assump-
tion, ∆′ �∗ (Cm)E′. Therefore, there exists a valuation w∗ in



Equality of consequence relations in finite-valued logical. . . 279

Cm, which maps the variables p1, p2, · · · , pi2−1 , pi2+1 , · · · , pm+k+1 on
the values y1, y2, · · · , yi2−1 , yi2+1 , · · · , ym+k+1 respectively, such that
w∗[∆′] ⊆ ω(Cm) and w∗(E′) ∈ ϕ(Cm). In this case we can con-
struct a valuation w∗∗, which maps the variables p1, p2, · · · , pm+k+1

on the values y1, y2, · · · , yi2−1 , yi1 , yi2+1 , · · · , ym+k+1 respectively. It
is clear that w∗∗[∆] ⊆ ω(Cm) and w∗∗(E) ∈ ϕ(Cm). But then
∆ �∗ (Cm)E, which contradicts our assumption.

The reasoning for (ii) and (iii) is analogous. 2

For m different variables there is k = mm different valuations
v1, v2, · · · , vk in Cm. We can assign to each variable pi(1 ≤ i ≤
m) a unique value-sequence |pi| =< x1, x2, · · · , xk >, where xl =
vl(pi)(1 ≤ l ≤ k).

Now let us construct the following sequence of the classes of for-
mulas:

• The elements of CL0 are the variables p1, p2, · · · , pm exclu-
sively;

• to a class CLt+1 belong all formulas that can be constructed
by means of one connective, an element of class CLt, and (if
needed) elements of CLn≤t.

For each formula B from CLn we can calculate the corresponding
value-sequence |B| =< y1, y2, · · · , yk >, where yj(1 ≤ j ≤ k) is
obtained from j-th elements of sequences assigned to the variables
included in B. Let us denote the set of value-sequences for elements
of Cln as |Cln|. Because the sequences in question consist of k
elements, and the number of truth-values equals m, in total there
is mk possible sequences. Therefore, there is a finite n0 ≤ mk, such
that |CLn0 | contains no value-sequence which is not also the element
of some |CLn<n0 |.
Lemma 5. The value-sequence of any formula B ∈ CLn>n0 is iden-
tical to some element of |CLn<n0 |.

Proof. Let B ∈ CLn0+1. By definition of CLn0+1, formula B
consists of the main connective, at least one formula from CLn0 ,
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and probably elements of CLni<n0 . By definition of n0, each value-
sequence from |CLn0 | is also present in some |CLnj<n0 |. Therefore,
by definition of |CL|, there is a set |CLmax(i,j)+1|, which contains
the value-sequence identical to |B|. Because ni < n0 and nj < n0,
we have that max(ni, nj) + 1 ≤ n0, |B| ∈ |CLn≤n0 |. From that,
according to the definition of n0, we obtain that |B| ∈ |CLn<n0 |.
The theorem is proved for CLn0+1. The generalization for CLn>n0

is obvious. 2

So the set |CL1|∪|CL2|∪· · ·∪|CLn0 | contains all value-sequences
possible in Cm for formulas that contain no more than m different
variables. From this fact and Lemma 4 it follows that Γ �∗ (Cm)B
for each Γ and B iff ∆ �∗ (Cm)E for every ∆ and E that consist
exclusively of the elemnts of CL1 ∪ CL2 ∪ · · · ∪ CLn0 .

This concludes the construction of the procedure for testing if
C(A) = C(B) for two arbitrary finite-valued matrices A and B for
some propositional language L.

References
[1] Kalicki, J., A test for the existence of tautologies according to many-

valued truth-tables, Journal of Symbolic Logic 15:182–184, 1950.
[2] Kalicki, J., A test for the equality of truth-tables, Journal of Symbolic

Logic 17:161–163, 1952.


