В. Х. Хаханян

ФУНКЦИОНАЛЬНЫЕ АЛГЕБРАИЧЕСКИЕ МОДЕЛИ ДЛЯ НА И ТЕОРИИ МНОЖЕСТВ С ИНТУИЦИОНИСТСКОЙ ЛОГИКОЙ.

Abstract In thw work we constructed the new type models for the set theory with intuitionistic logic

1. Функциональные алгебраические модели для арифметики.

В настоящей работе будет обобщен для теории множеств с интуиционистской логикой предложенный А.Г.Драгалиным очень общий подход к построению моделей для нестандартных логик, в частности, для интуиционистской логики, в стиле равномерных алгебр, см. [1]. Приводимое изложение А.Г.Драгалина (достаточно ясное, но без очевидных деталей) сопровождается достаточным количеством примеров для арифметики (см. там же), и необходимо для понимания обобщения данного подхода на теорию множеств. Также, в цитируемой работе в последнем из примеров, рассматривая модель для штрих-реализуемости Клини (см. [2], столбец С), автор соответствующую штрих-реализуемости приводит «...модель Клини...» ([1], стр. 194). Но связь между приводимой моделью и реализуемостью Клини такова: «...° ϕ ° = $T \Leftrightarrow ((|\phi) \land HA \vdash \phi)$ »; см. также [1], стр.195; сравни с [3]. Конечно, с помощью приведённой модели (соответствующей как раз формульной реализуемости из [3]) можно доказать свойства дизъюнктивности и экзистенциальности для арифметики НА (именно этот результат и стремится получить автор, используя подходящую равномерную алгебру). Однако штрихреализуемость Клини (да и другие модели типа равномерной алгебры для НА) не совпадают с выводимостью в интуиционистской арифметике. В [4] доказано, что функциональной алгебраической модели для штрих-реализуемости Клини не существует. Поэтим свойством обладает любая функциональная алгебраическая модель (и для теории множеств также), в которой формализуется содержательное понятие «выводимости». Все результаты, приводимые в данной Главе, анонсированы в работах автора [5], [6], [7].

Как отмечалось выше, в [1] даётся ряд примеров, в которых для той или иной модели НА (в первую очередь для моделей типа реализуемости) приводится соответствующая этой модели функциональная алгебраическая (ФАМ). модель Сейчас МЫ достаточно кратко опишем и охарактеризуем общую схему построения ФАМ для арифметики, что сократит изложение и облегчит понимание подобной модели для теории множеств.

Известно, что при исследовании **НА** было построено (см. [3]) большое количество моделей типа реализуемости. Естественно попытаться рассмотреть эти модели с некоторой единой точки зрения (да и не только модели отмеченного типа). Алгебраическое исследование таких моделей приводит к рассмотрению существенно неполных псевдобулевых алгебр (ПБА), в которых верхние и нижние грани существуют лишь для некоторых семейств, которые задаются структурой языка. Приведем описание одного из вариантов такого рассмотрения, предложенного А.Г. Драгалиным, см. [1] или [3].

Функциональная псевдобулева алгебра (ФПБА) задаётся набором < **B, D, F >**, где **B** - ПБА (алгебра истинностных значений), **D** - непустое множество (объектная область), а **F** - семейство функций (или семейство форм) ФПБА. Всякий элемент из **F** есть функция нескольких аргументов (м.б., нульместных), всюду определённая на элементах из **D** и со значениями в ПБА. На **F** накладываются следующие ограничения:

- 1. **F** замкнуто относительно операций:
 - а) добавления фиктивного аргумента; б) перестановки аргументов
 - в) отождествления аргументов.
- 2. Г содержит нуль и единицу ПБА в качестве нульместных функций.
- 3. Г замкнуто относительно псевдобулевых операций л, у,

Последнее означает вот что. Если \mathbf{f} , \mathbf{g} есть две формы из \mathbf{F} с одним и тем же количеством аргументных мест, то найдётся функция \mathbf{h} из семейства форм такая, что для любых элементов $\mathbf{a}_1,...,\mathbf{a}_n$ из \mathbf{D} $\mathbf{h}(\mathbf{a}_1,...,\mathbf{a}_n) = \mathbf{f}(\mathbf{a}_1,...,\mathbf{a}_n) \wedge \mathbf{g}(\mathbf{a}_1,...,\mathbf{a}_n)$ или, кратко, $\mathbf{h} = \mathbf{f} \wedge \mathbf{g}$. Аналогично, требуется существование форм $\mathbf{f} \vee \mathbf{g}$ и $\mathbf{f} \supset \mathbf{g}$.

4. Наше множество форм должно быть замкнуто относительно операций взятия верхних и нижних граней. Это означает вот что. Пусть фиксировано некоторое аргументное место, например \mathbf{x}_1 . Если \mathbf{f} из семейства форм, то требуется, чтобы существовали формы \mathbf{g} и \mathbf{h} от аргументов $\mathbf{x}_2,...,\mathbf{x}_n$ такие, чтобы для любых объектов $\mathbf{a}, \mathbf{a}_2,...,\mathbf{a}_n$ из \mathbf{D} было выполнено:

 $g(a_2,...,a_n) = \wedge \{f(a,a_2,...,a_n): a \in D\},$ $h(a_2,...,a_n) = \bigvee \{f(a,a_2,...,a_n): a \in D\},\$ требуется существование соответствующих пересечений объединений ПБА. Будем это записывать так: $g(x_2,...,x_n) = \forall x f(x,x_2,...,x_n), h(x_2,...,x_n) = \exists x f(x,x_2,...,x_n).$ Определение ФПБА на этом завершено. Заметим, что совершенно не требуется, чтобы ПБА была полной, т.е. чтобы содержала все нижние и верхние грани своих подмножеств.

Лалее рассматриваются логико-математические без выделенного равенства и функциональных символов, т.е. каждый язык задаётся набором <Cnst, Pr> - констант и предикатных символов. Функциональная алгебраическая модель (ФАМ) для языка < Cnst, Pr> определяется набором $A = \langle B, D, F, Cnst, Pr \rangle$, где $\langle B, D, F \rangle$ есть ФПБА, функция *Cnst* сопоставляет каждой константе с нашего языка объект c=Cnst(c), а каждому предикатному символу **P** нашего языка сопоставляется элемент ${}^{\circ}\mathbf{P}^{\circ}=\mathbf{Pr}(\mathbf{P})$ из семейства форм F. Дополнительно предполагается, что семейство форм нашей модели А удовлетворяет и такому условию: это семейство относительно операции фиксации аргумента объектной области c, где c есть константа нашего языка, что означает вот что: если $f \in F$, $f=f(x_1,...,x_i,...,x_n)$, $c\in Cnst$, тогда найдётся функция $g\in F$ такая, что для всех объектов $a_1,...,a_n$ $g(a_1,...,a_{i-1},a_{i+1},...,a_n)=f(a_1,...,c,...,a_n)$.

Если задана (ФАМ) **A** для языка **Q**, то можно определить значение в модели для всякой формулы языка **Q**. Значением формулы φ будет при этом некоторая форма ФПБА $\varphi \circ \varphi \in F$. Заметим, что, в отличие от обычных алгебраических моделей (см. [8]), значение приписывается не формулам, оцененным объектами модели, а просто формулам языка **Q**, в том числе и формулам с параметрами.

Для определения значения формулы в модели будем помечать аргументные места форм переменными языка ${f Q}$. С этой целью линейно упорядочим все переменные языка ${f Q}$ каким-либо фиксированным способом. Если дана формула ${f \phi}$, то все ее параметры

выпишем в список $x_1,...,x_n$ в упомянутом выше линейном порядке. В качестве значения формуле ϕ будет сопоставляться форма $f \in F$ от аргументов $x_1,...,x_n$.

Теперь определим значение ${}^{\circ}\phi^{\circ}$ индукцией по построению формулы. Если ϕ - атомарная формула вида P (u_1 , u_n), где u_i переменные или константы, а x_1 ,.... x_n - стандартный список параметров ϕ , то ${}^{\circ}P$ (u_1 , u_n) ${}^{\circ}$ есть форма от аргументов x_1 ,.... x_n , получающаяся из ${}^{\circ}P^{\circ}$ с помощью фиксации аргументов соответствующими константами. Значение ${}^{\circ}L^{\circ}$ есть нуль алгебры B.

Если ϕ имеет вид $(\psi \wedge \eta)$, $(\psi \vee \eta)$, $(\psi \supset \eta)$, то форму ${}^{\circ}\phi^{\circ}$ вычисляем следующим образом. Сначала найдем ${}^{\circ}\psi^{\circ}$ и ${}^{\circ}\eta^{\circ}$. Затем с помощью тривиальных операций перестановки и добавления фиктивных аргументов получим из форм ${}^{\circ}\psi^{\circ}$ и ${}^{\circ}\eta^{\circ}$ формы $f_1(x_1, ..., x_n)$ и $f_2(x_1, ..., x_n)$ от параметров формулы ϕ и, наконец, вычислим ${}^{\circ}\phi^{\circ}$ как форму $f_1 \wedge f_2$, $f_1 \vee f_2$ или $f_1 \supset f_2$.

Если ϕ имеет вид $\forall x\psi(x)$ или $\exists x\eta(x)$, то определим ${}^{\circ}\phi^{\circ} = \forall x^{\circ}\psi(x)^{\circ}$ или, соответственно, ${}^{\circ}\phi^{\circ} = \exists x^{\circ}\eta(x)^{\circ}$. Разумеется, если у формулы нет параметра x, то никаких изменений при определении формы ${}^{\circ}\phi^{\circ}$ не происходит. Если ϕ - предложение нашего языка, то соответствующая форма оказывается нульмерной и принадлежит ПБА. Предложение ϕ истинно в модели A, если ${}^{\circ}\phi^{\circ} = 1$ - единица нашей ПБА. A есть модель для теории H, если все нелогические аксиомы H будут истинны в A. Теорема о корректности для нашего класса моделей имеет следующий вид. **Теорема** (A. Γ . Драгалин, см. [1]): если A - ΦAM для языка Q, ϕ - предложение Q, выводимое в интуиционистской логике предикатов, то ${}^{\circ}\phi^{\circ} = 1$.

Доказательство теоремы проводится индукцией по длине вывода формулы ϕ .

Теперь рассмотрим некоторые виды реализуемости в языке арифметики. Сам язык арифметики **HA** нужно модифицировать так, чтобы избежать употребления функциональных символов. Это делается с помощью стандартной процедуры: каждому **n**-местному функциональному символу $f(x_1, ..., x_n)$, сопоставляется (n + 1)-местный предикатный символ $y = f(x_1, ..., x_n)$ и все аксиомы, относящиеся к этому функциональному символу, естественным образом заменяются на аксиомы, относящиеся к предикатному

символу. Соответственно, несколько изменяются и другие аксиомы. Например, принцип арифметической индукции приобретает вид: φ (0) $\land \forall xy (\varphi(x) \land (y = Sx) \rightarrow \varphi(y)) \rightarrow \forall x\varphi(x)$. Мы считаем, что наш язык арифметики имеет один сорт переменных x, y, z,... и семейство констант 0, 1, 2,... для изображения натуральных чисел.

Функция *Cnst* во всех моделях ниже определяется тривиальным образом: константе \mathbf{n} языка сопоставляется объект $n \in \mathbf{D}$. Таким образом, в рассматриваемых примерах модель задается определением \mathbf{D} , \mathbf{F} и \mathbf{Pr} Оцененная формула есть, по определению, формула $\mathbf{\phi}$, в которой все вхождения параметров замещены объектами из \mathbf{D} (константами или каналами).

Приведём теперь две наиболее простых ФАМ. Каждую формальную теорию, например, $\mathbf{H}\mathbf{A}$, можно рассматривать как функциональную алгебраическую модель. По существу это известная алгебра Линденбаума - Тарского. В качестве алгебры \mathbf{B} истинностных значений следует взять просто множество всех оцененных формул, а в качестве множества \mathbf{F} форм - множество всех формул. Каждая формула задает форму относительно операции замещения параметров.

Основное отношение на **B** определяется так : $\mathbf{a} \leq \mathbf{b} \Leftrightarrow (\mathbf{H}\mathbf{A} \vdash \mathbf{a}' \supset \mathbf{b}')$, где \mathbf{a}' , \mathbf{b}' получены из \mathbf{a} , \mathbf{b} соответственно путем согласованного превращения каналов в переменные. Псевдобулевы операции над формами при этом будут совпадать с синтаксическими операциями над соответствующими формулами. Если определить ${}^{\circ}\phi^{\circ} = \phi$ для атомарных формул, то для всякого предложения ψ будем иметь ${}^{\circ}\psi^{\circ} = \mathbf{1} \Leftrightarrow (\mathbf{H}\mathbf{A} \vdash \psi)$.

Но можно определить и более интересную и неожиданную модель **HA**, где в качестве форм будут фигурировать формулы (см. также [1]). Для всякой арифметической формулы φ через $Pr(\varphi)$ обозначим формулу с теми же параметрами, что и у φ , содержательный смысл которой таков: $Pr(\varphi)$ утверждает, что в исчислении **HA** выводится замкнутая формула, полученная из φ замещением ее параметров натуральными числами из некоторого списка y, который есть полный список всех параметров формулы φ . Формула $Pr(\varphi)$ строится стандартным образом по формуле φ , с подробностями можно ознакомиться, например, по статье [9]. Для всякой формулы φ через $\square \varphi$ обозначим формулу $\varphi \land Pr(\varphi)$.

В качестве алгебры **B** вновь возьмем множество всех оцененных формул, а в качестве множества **F** форм - множество всех формул, но теперь основное отношение определим иначе: $\mathbf{a} \leq \mathbf{b} \Leftrightarrow (\mathbf{H}\mathbf{A} \vdash \Box \mathbf{a}' \supset \mathbf{b}')$. Для атомарных формул полагаем ${}^{\circ}\phi^{\circ} = \phi$.

Псевдобулевы операции в этой модели определяются следующим образом (здесь слева стоит знак операции в нашей модели, а справа - формула, являющаяся значением):

$$(\phi) \land (\psi) = (\phi \land \psi); \ (\phi) \lor (\psi) = (\Box \phi \lor \Box \psi); \ (\phi) \supset (\psi) = (\Box \phi \supset \psi); \ \neg(\phi) = (\neg \Box \phi); \ \forall x(\phi) = (\forall x\phi); \ \exists x(\phi) = (\exists x \Box \phi); \ \bot = (0=1).$$

Реализуемость, соответствующая этой модели, была использована Бизоном. (см. [10]). Связь модели с реализуемостью Бизона можно теперь выразить следующей эквивалентностью: ${}^{\circ}\phi^{\circ} = 1 \Leftrightarrow (HA \vdash \phi^{p})$.

Далее в работах [1] и [3] рассматривается отмеченная во введении штрих-реализуемость Клини и для неё строится подходящая ФАМ, однако нетрудно видеть, доказывая свойства эффективности логических связок, что эта ФАМ совпадает с выводимостью в интуиционистской арифметике. Мы докажем, что не существует модели ФАМ для штрих-реализуемости Клини (и, тем не менее, существует модель типа ФАМ для формализованной и содержательной реализуемостей Клини: см. [1] и [3]).

Предположим, что некоторая Φ AM A есть модель для штрихреализуемости Клини. Тогда (по определению) имеется такое отображение формул языка арифметики в множество форм A, что для всякой формулы ϕ : |- реализуема ϕ тогда и только тогда, когда $F_{\phi} \in \mathbb{1}$ (F_{ϕ} - форма из ФПБА модели ФАМ **A**, соответствующая формуле арифметики ϕ , а 1-единица ПБА, использованной при построении ФАМ **A**).

Рассмотрим два различных, неразрешимых в **HA**, утверждения ϕ и η (т.е. **HA** $\not\vdash \phi$, **HA** $\not\vdash \neg \phi$, **HA** $\not\vdash \eta$ и **HA** $\not\vdash \neg \eta$). Так как

НА $ot\line$ ϕ и так как в **НА** $ot\line$ η , то формулы ϕ и η не являются выводимыми, однако являются $ot\line$ - реализуемыми формулами языка арифметики. Если в ϕ **А** им соответствуют формы $ot\line$ $ot\li$

Теорема 1. Не существует ФАМ **A**, соответствующей штрихреализуемости Клини.

2. Функциональные алгебраические модели для теории множеств.

В оставшейся части данной Главы техника А.Г.Драгалина будет обобщена на теорию множеств с интуиционистской логикой. Пусть имеется некоторая функциональная псевдобулева алгебра В. Построим универсум D (объектную область), используя внешнюю индукцию по ординалам (наше построение и доказательство не выйдет за рамки теории **ZFIR+DCS**). Все дальнейшие построения и результаты этой Главы были анонсированы в [6] и [7].

Пусть B — псевдобулева алгебра, не обязательно полная, не факторизованная по отношению эквивалентности и 0 и 1 — ноль и единица этой алгебры; пусть $B^- = B\setminus\{0\}$ и p — произвольный элемент алгебры, не равный нулю. Полагаем: $D_0 = \emptyset$; $D_{\alpha+1} = \{x : xext(\alpha+1)\}; xext((\alpha+1) \Leftrightarrow x \subseteq (B^- \times \cup \{D_\beta : \beta \le \alpha\}) \land [y \approx z \ (\alpha,p) \land \langle a,y \rangle \in x \Rightarrow (\exists b \in B)(b \ge (a \land p) \land \langle b,z \rangle \in x)];$

 $y \approx z(\alpha,p) \Leftrightarrow (\langle a,x \rangle \in y \Rightarrow (\exists b \in B) (b \ge (a \land p) \land \langle b,x \rangle \in z)) \land (\langle a,x \rangle \in z \Rightarrow (\exists b \in B)(b \ge (a \land p) \land \langle b,x \rangle \in y));$ если α - предельный ординал, то

 $D_{\alpha} = \bigcup \{ D_{\beta} : \beta < \alpha \}$. Полагаем теперь $D = \bigcup \{ D_{\alpha} : \alpha \in On \}$. Универсум D (объектная область) определен.

В качестве ФПБА берем теперь множество отображений из $\mathbf{D}^{\mathbf{n}}$ в \mathbf{B} , обладающее всеми свойствами, описанными выше в виде ограничений на ФПБА и содержащее форму ${}^{\mathbf{o}}\mathbf{x} \in \mathbf{y}^{\mathbf{o}}$; (полагаем ${}^{\mathbf{o}}\mathbf{x} \in \mathbf{y}^{\mathbf{o}}(\mathbf{a}, \mathbf{b}) = \mathbf{c} \Leftrightarrow \langle \mathbf{c}, \mathbf{a} \rangle \in \mathbf{b} \land \mathbf{c} \neq \mathbf{0}$). ФПБА определена.

Определим теперь ФАМ для языка односортной теории множеств **ZFIR** + **DCS**. Функция *Cnst* не определена (считаем, что в языке нет индивидных констант), функция Pr уже определена, т.к. в языке один бинарный предикатный символ \in . Таким образом, определена функциональная алгебраическая модель набор A= <B, D, F, *Cnst*, Pr> для языка теории множеств.

Теорема 2. Если **A** – Φ AM для языка теории множеств и φ - предложение, выводимое в теории **ZFIR** + **DCS**, то ${}^{\circ}\varphi^{\circ} = 1$.

Доказательство Теоремы 2. проводим индукцией по построению вывода предложения ϕ в теории **ZFIR** + **DCS**. Аксиомы и правила вывода интуиционистской логики предикатов следуют из Теоремы Драгалина для логики предикатов (см. выше). Поэтому остаётся проверить, что значение всех собственных аксиом и схем аксиом теории множеств равно 1 алгебры В. Отметим, что метаматематика нашего доказательства не будет выходить за рамки теории множеств **ZF**, которая является равнонепротиворечивой с нашей теорией **ZFIR** + **DCS**.

- а) Проверка выполнимости аксиомы объёмности: пусть $p = {}^{\circ} \forall u(u \in x \leftrightarrow u \in y)^{\circ}$ и пусть $q = {}^{\circ}x \in z^{\circ}$ и пусть $r = {}^{\circ}y \in z^{\circ}$. Нужно доказать, что $p \land q \leq r$. Докажем, что $x \approx y(p,\alpha)$ для некоторого ординала α . Пусть для всякого $u \circ u \in x \leftrightarrow u \in y^{\circ} = s$, где $s = s_1 \land s_2$, а $s_1 = {}^{\circ} u \in x \rightarrow u \in y^{\circ}$ и $s_2 = {}^{\circ} u \in x \leftarrow u \in y^{\circ}$. Имеем $p \leq s \leq s_1 = a \rightarrow b$, где $a = {}^{\circ}u \in x^{\circ}$ и $b = {}^{\circ}u \in y^{\circ}$. Получаем по законам ПБА, что $p \rightarrow a \rightarrow b$, т.е. $p \land a \leq b$ и в обратную сторону симметрично с заменой s_1 на s_2 . Отсюда следует, что $x \approx y(p,\alpha)$, где α ранг множества y. Так как множество z из универсума, то $p \land q \leq r$. Таким образом, истинность аксиомы объёмности равна 1 нашей алгебры.
- б) Проверка выполнимости аксиом пары, объединения и степени: проверим только одну из этих аксиом, т.к. все три аксиомы проверяются аналогично. Проверим выполнимость аксиомы пары

- $\forall ab\exists x(a\in x \land b\in x)$. В качестве искомого множества x берем $\{\langle 1,u\rangle : [u\approx a(p,\alpha)]\lor [u\approx b(p,\alpha)]\}$, где α максимальный ординал из рангов множеств a и b, a p любой элемент ПБА, отличный от нуля. Очевидно, что x принадлежит D и что истинность аксиомы пары равна 1 по определению x. Аксиома пары выполнена. Аксиомы степени и объединения проверяются аналогично, удлиняется лишь определение множества x. Например, для аксиомы объединения $x = \{\langle 1,y\rangle : \exists pqz(\langle p,y\rangle \in z \land \langle q,z\rangle \in a)\}$.
- в) Проверка выполнимости аксиомы бесконечности: предположим, что мы теперь имеем дело с двусортным вариантом нашей теории множеств ZFI2 + DCS. Тогда аксиома бесконечности имела бы очень простой вид: $\exists x \forall n (n \in x)$. Нужное **x** из нового универсума **D** строилось бы как в предыдущем пункте (конечно, изменились бы определения эквивалентности множеств на соответствующем уровне с каким-либо элементом из ПБА, который обязан быть больше нуля, и определение экстенсиональности множеств, выбираемых для универсума на данном ординальном уровне. Однако в сущности это никак не поменяло бы идей построения нашего нового универсума по сравнению со старым, построенным для модели для односортной теории множеств: множества из нового универсума содержали бы теперь не только упорядоченные пары (ненулевой элемент из ПБА, множество уже построенное), но и пары (ненулевой элемент из ПБА, натуральное число). Доказательства выполнимости аксиом и схем аксиом делались бы точно также, с учетом появления новых упорядоченных пар: просто удлинились бы построения за счет появления в модели натуральных чисел). С учётом сказанного получаем, что истинность аксиомы бесконечности равна 1.
- г) Проверка выполнимости аксиомы **DCS**: $\exists x \forall y (\neg \neg y \in a \rightarrow y \in x)$. Полагаем $x = \{\langle 1, y \rangle : \exists p \langle p, y \rangle \in a \}$. Нужно доказать, что $(p \rightarrow 0) \rightarrow 0 \leq 1$, но это очевидно. Также очевидно, что множество x принадлежит универсуму **D**. Выполнимость аксиомы **DCS** доказана.
- д) Проверка выполнимости схемы аксиом выделения: $\exists x \forall y (y \in x \leftrightarrow y \in a \land \phi(y))$; здесь формула $\phi(y)$ может содержать параметры. Полагаем $\mathbf{x} = \{\langle \mathbf{q}, \mathbf{y} \rangle : \mathbf{q} = {}^{\circ}\mathbf{y} \in \mathbf{a} \land \phi(\mathbf{y}) {}^{\circ}$. Докажем, что при выбранном \mathbf{x} истинность схемы аксиом выделения равна 1. Но истинности левой и правой частей эквивалентности совпадают и поэтому истинность

схемы равна 1, что и доказывает требуемое. Однако нужно доказать, что множество \mathbf{x} принадлежит универсуму \mathbf{D} .

Лемма 2.1 Если $\mathbf{y} \approx \mathbf{z} (\mathbf{\alpha}, \mathbf{p})$, то $\mathbf{p} \wedge^{\circ} \mathbf{\varphi}(\mathbf{y})^{\circ} = \mathbf{p} \wedge^{\circ} \mathbf{\varphi}(\mathbf{z})^{\circ}$.

Доказательство Леммы 2.1 проводим индукцией по построению формулы ϕ .

Атомарные случаи:

- 1) $\varphi \Leftrightarrow y \in u$; т.к. $u \in D$, то если $\langle q, y \rangle \in u$, то $\exists r \in B(\langle r, z \rangle \in u \land (p \land q) \leq r)$, т.е. ${}^{\circ}z \in u^{\circ} \geq p \land {}^{\circ}y \in u^{\circ}$ и наоборот в силу симметрии;
- 2) $\phi \Leftrightarrow u \in y$; если $\langle q, u \rangle \in y$, то $\exists r \in B(\langle r, u \rangle \in z \land (p \land q) \leq r)$, т.е. ${}^{\circ}u \in y^{\circ} \land p \leq {}^{\circ}u \in z^{\circ}$.

Случаи связок: конъюнкция и дизъюнкция разбираются очевидным образом; пусть $\varphi \Leftrightarrow \psi \to \eta$ и пусть утверждение Леммы 2.1 выполнено для ψ и η , и пусть ${}^{\circ}\psi(y){}^{\circ} = \alpha$, ${}^{\circ}\psi(z){}^{\circ} = \beta$, ${}^{\circ}\eta(y){}^{\circ} = \alpha_1$, ${}^{\circ}\eta(z){}^{\circ} = \beta_1$. Дано $p \wedge \alpha \to \alpha_1$, $p \wedge \beta \to \beta_1$. Нужно доказать, что $(p \wedge \alpha \to \beta) \to (\alpha_1 \to \beta_1)$. Предположим p, $(\alpha \to \beta)$, α_1 и докажем β_1 . Так как α_1 , то $p \wedge \alpha$, а так как α , то β , а так как $p \wedge \beta$, то β_1 , ч.т.д. Случаи кванторов:

- 1) $\phi \Leftrightarrow \forall x \psi(x,y)$; имеем $\forall x (p \wedge^{\circ} \psi(x,y)^{\circ} \leq {^{\circ}} \psi(x,z)^{\circ}$ по индукционному предположению, а тогда $\forall x (p \wedge^{\circ} \forall x \psi(x,y)^{\circ} \leq {^{\circ}} \psi(x,z)^{\circ})$, т.е. $p \wedge^{\circ} \forall x \psi(x,y)^{\circ} \leq {^{\circ}} \forall x \psi(x,z)^{\circ}$;
- 2) $\phi \Leftrightarrow \exists x \psi(x,y)$; имеем $p \land^{\circ} \psi(x,y)^{\circ} \leq {}^{\circ} \psi(x,z)^{\circ} \leq {}^{\circ} \exists x \psi(x,z)^{\circ}$ по предположению индукции, а тогда $p \land^{\circ} \exists x \psi(x,y)^{\circ} \leq {}^{\circ} \exists x \psi(x,z)^{\circ}$. Лемма 2.1 доказана, а с ней доказана и выполнимость схемы аксиом выделения.
- е) проверка выполнимости схемы аксиом трансфинитной индукции:

 $\forall x [\forall y (y \in x \to \phi(y)) \to \phi(x)] \to \forall x \phi(x)$. Введём следующие обозначения $\mathbf{p} = {}^{\circ} \forall x [\forall y (y \in x \to \phi(y)) \to \phi(x)]^{\circ}$, а $\mathbf{q} = {}^{\circ} \forall y (y \in x \to \phi(y))^{\circ}$. Трансфинитной индукцией по рангу множества докажем, что $\forall x ({}^{\circ} \phi(x)^{\circ} \geq \mathbf{p})$. Предположим, что $\forall y (\mathbf{rng}(y) < \mathbf{rng}(x) \to {}^{\circ} \phi(y)^{\circ} \geq \mathbf{p})$. Имеем $\mathbf{q} \to {}^{\circ} \phi(x)^{\circ} \geq \forall x [\mathbf{q} \to {}^{\circ} \phi(x)^{\circ}] = \mathbf{p}$, т.е. $\mathbf{p} \to (\mathbf{q} \to {}^{\circ} \phi(x)^{\circ})$; докажем, что $\mathbf{p} \to \mathbf{q}$; но при фиксированом \mathbf{x} пусть $\mathbf{rng}(y) < \mathbf{rng}(x)$, а тогда $\mathbf{p} \to {}^{\circ} \phi(y)^{\circ}$ и, следовательно, $\mathbf{p} \to ({}^{\circ} y \in \mathbf{x}^{\circ} \to {}^{\circ} \phi(y)^{\circ})$ для всех \mathbf{y} таких, что ${}^{\circ} y \in \mathbf{x}^{\circ} > \mathbf{0}$; но тогда предыдущее утверждение верно для любых \mathbf{y} из нашего универсума \mathbf{D} , т.е. $\mathbf{p} \to {}^{\circ} \forall y (y \in \mathbf{x} \to \phi(y))^{\circ}$, т.е. $\mathbf{p} \to \mathbf{q}$, а тогда $\mathbf{p} \to {}^{\circ} \phi(\mathbf{x})^{\circ}$.

Проверка выполнимости схемы аксиом собирания («collection»; считаем, что ПБА В является множеством): $\forall x(x \in a \rightarrow \exists y \phi(x,y)) \rightarrow \exists H \forall x(x \in a \rightarrow \exists y(y \in H \land \phi(x,y))).$ истинность посылки есть \mathbf{p} , а $\mathbf{q}_x = {}^{\mathrm{o}} \exists y \phi(x,y)$ о. Имеем $\mathbf{q}_x \geq {}^{\mathrm{o}} \phi(x,y)$ для всякого x; также $p \le {}^{\circ}x \in a^{\circ} \to {}^{\circ}\exists y \phi(x,y))^{\circ}$ или $\forall x(p \to ({}^{\circ}x \in a^{\circ} \to {}^{\circ}x \in a^{\circ} \to {}^{\circ}x \in a^{\circ})$ (q_x)). Нужно доказать, что для некоторого множества (H) из (D) имеет место ${}^{\circ}\forall x(x \in a \to \exists y(y \in H \land \phi(x,y)))^{\circ} \ge p$, т.е. доказать, что для всякого $x (^{\circ}x \in a^{\circ} \rightarrow (^{\circ}\exists y(y \in H \land \phi(x,y))^{\circ} = r_x)) \ge p$. Рассмотрим $R_x = \{s \in B : r_x \in B$ $\exists y.s = {}^{\circ}\phi(x,y){}^{\circ}$, где x – фиксированное множество из D. $\forall s \in R_x \exists y.s =$ $^{\circ}$ $\phi(x,y)^{\circ}$, а тогда (в силу внешней схемы аксиом собирания (collection)), $\exists H_x \forall s \in R_x \exists y \in H_x$. $s = {}^{\circ} \varphi(x,y)^{\circ}$. Так как существует верхняя грань элементов ${}^{\circ}\phi(x,y)^{\circ}$ по $y \in H_x$ (в силу существования ${}^{\circ}\exists y \phi(x,y))^{\circ}$) и равна последней, то полагаем $H = \{\langle 1,y \rangle : y \approx z \ (\alpha,p) \land z \in H_x \}$ для некоторого **x** такого, что ${}^{\circ}\mathbf{x} \in \mathbf{a}^{\circ} \neq \mathbf{0}$. Нетрудно видеть, что для $(^{\circ}x \in a^{\circ} \rightarrow (^{\circ}\exists y (y \in H \land \phi(x,y))^{\circ}) \ge p$, а тогда истинность схемы аксиом собирания равна 1. Теорема 2 доказана.

ЛИТЕРАТУРА

- 1. *Драгалин А.Г.* Функциональные алгебраические модели. // Семиотика и информатика, М.: ВИНИТИ, 1979, Вып.ХІІІ, С. 184-195.
- Kleene S.C. Realizability: a retrospective survey.// Lecture Notes in Math.1973, N.337, P. 96
- 3. Драгалин А.Г. Математический интуиционизм. Введение в теорию доказательств. М.: Наука, 1979, С.60-61.
- 4. Хаханян В.Х. Функциональная алгебраическая модель, эквивалентная штрихреализуемости Клини. // Матем. заметки, т.75, январь 2004, Вып.1, С. 155-157.
- 5. *Хаханян В.Х.* Функциональная алгебраическая модель, соответствующая штрихреализуемости Клини. // М.: Наука,2003, Логические исследования. Вып. 10,С.198-203.
- 6. *Хаханян В.Х.* Функциональные алгебраические модели для неклассической теории множеств. // М.: Наука,1997, Логические исследования. Вып. 4, С. 192-195.
- 7. *Khakhanian V.Kh*. Functional algebraic models for non-classical set theory. // Bulletin of the Section of Logic, !998, ½ (march-june), v. 27, P. 53-54.
- 8. Расёва Е., Сикорский Р. Математика метаматематики. М.: Наука, 1972.
- 9. *Feferman S.* Arithmetization of mathematics in general setting.// Fundamenta Mathematica, 1960, N.49, P.35-92
- 10. *Beeson M.* The nonderivability in intuitionistic formal system of theorem on the continuity of effective operations.// The Journal of Symbolic Logic, 1975, v.40, N.3, P.321-346.