
J.M. Dunn1

TERNARY RELATIONAL SEMANTICS
AND BEYOND:

Programs as arguments (data)
and programs as functions (programs)

1. Introduction
The purpose of this paper is to review some ideas from Dunn and

Meyer (1997) and Dunn (2001) and "write them large". The first paper
showed how to represent combinatory algebras using ternary frames,
and the second paper showed how to do the same for relation algebras.
It should be pointed out that these representations both fall under the
general heading of "gaggle theory", as developed in a series of papers
beginning with Dunn (1991), in which an n-ary operator is represented
using an n+1-placed relation. These results were presented in a
somewhat mathematical fashion, although philosophical motivations
were introduced as well. The present paper will focus on these
philosophical motivations and clarify and extend them. In addition it
will point to some future research directions in connection with Pratt's
dynamic logic and Hoare's logic of programming.

2. Frege and Boole
Frege's famous dictum, expressed as a conundrum, is that "the

concept horse is not a horse". This is our text for this occasion.
Frege has three theses that are relevant. These theses are to be

found scattered about his three papers "Concept and Function",
"Concept and Object", and "Sense and Reference"2.

1. A concept is a special kind of function, taking objects as
arguments and operating upon them to produce a rather unfamiliar
object (a truthvalue)3. Thesis 1.

1 School of Informatics, Indiana University, Bloomington IN 47405 (USA), dunn-
@indiana.edu.

2 Originally published in German in 1892-93 and translated into English in Geach and
Black (1960).

3 Frege also had a distinction between two kinds of functions, which we might call,
using terminology that has become current, intensional and extensional (Frege talked
rather of functions and their course of values (identifying the latter with sets)). This
distinction is not important for this paper and we shall ignore it.

282

2. A function is a very different thing than its argument, and in fact
a function cannot itself ever be an argument (functions are
"incomplete" whereas their arguments are "complete"). Thesis 2.

3. A definite description ('the so-and-so') refers to an object. Thesis 3.
From 3 we conclude:
4. The definite description `the concept horse' refers to an object.
From1and 2 we conclude
5. A concept cannot be an object.
And so we get something very close to Frege's dictum (but not yet a

conundrum):
6. The reference of the definite description `the concept horse' is

not a concept.
But the following seemingly obvious principle gives the

conundrum:
7. The reference of a definite description `the so-and-so' is the so-

and-so.
For now we can conclude:
8. The reference of a definite description `the concept horse' is the

concept horse.
And using substitution of identicals, from 6 and 8, we finally

obtain the conundrum:
9. The concept horse is not a concept.
Thus, the concept horse, given the argument Man of War, gives the

value True, and given the argument Francis (the talking mule) it gives
the value False. Frege's point is that there is a very distinct difference
between referring to a function, and using it. Frege liked to talk of
concepts/functions as complete (saturated) items, and of
objects/arguments as incomplete (unsaturated) items.

Perhaps a more contemporary way of making the distinction is to
say that when we refer to the concept horse by using the phrase "the
concept horse" we are referring to a static object, and not to the
function in its full dynamic nature.

Modern logicians can make this distinction using the lambda
notation of Church (1941). Thus x + 1 is incomplete, waiting for an
argument to be input to the variable x, say 2, before producing the
output value 2 + 1 = 3. Whereas λx(x + 1) is complete and denotes the
function that applied to an argument x returns the result x +1: It can
have functions applied to it as an argument. For example, we can apply
iteration to it so as to obtain λx(x + 2). Frege goes on at length to make

283

this by now familiar distinction, using Greek lower-case letters (he did
not have the lambda notation, which importantly denotes the scope of
the binding), writing things such as ξ + 1 to denote the successor
function. Can the same item be both an object/argument and a concept
(function)? Frege thought not, but thought that when we want to refer
to a concept, we end up referring to a close cousin of it which he
termed a "concept correlate". In this paper we show how to make sense
of this idea.

In further motivating this paper, we turn to another one of the
founders of modern logic, George Boole. Boole (1847) had two
interpretations of what has now come to be known as Boolean algebra.
The primary interpretation was that the elements of a Boolean algebra
are to be thought of as propositions. The secondary interpretation was
that the elements of a Boolean algebra are to be thought of as sets.
Boole observed that propositions and sets obeyed the same laws,
mapping conjunction into intersection, disjunction into union, and
negation into relative complement. He explained this by observing that
a proposition can be regarded as the set of cases in which it is true.
This is the fundamental origin of the idea that a proposition can be
understood as a set of possible worlds. This latter notion has been
generalized to the idea that a proposition can be understood as a set of
information states. These can be partial, and even inconsistent. Total,
consistent information states are surrogates for possible worlds. Let us
call this Insight 1. It is the basis of the Carnap-Kripke-Montague-
Stalnaker-et al program of semantics. This might be called a static
conception of a proposition, since propositions just "sit there" as sets
of states.

More recent authors, e.g., Gärdenfors and Makinson (1988) have
observed that there is also a more dynamic conception of proposition.
When we add a proposition to our existing set of beliefs, it transforms
these beliefs into another belief set. Let us call this Insight 2. A belief
set can be conceptualized to be one gigantic proposition (the
conjunction of someone's beliefs). So a proposition can be viewed as
an operator on propositions. This is the dynamic conception of
proposition.

Insight 1 and Insight 2 both seem to be correct. How can we
reconcile them? The quick answer is that a proposition must be
simultaneously an object (potential argument) and a function. But what
does this mean? This is the topic which we shall explore throughout
this paper.

284

3. Von Neumann's concept of a "stored program"
There is a certain irony in the development of the study of logic

and computation which has been a hallmark of the twentieth century.
Although this development has taken place in at least the first half of
the century in largely the same venues and by largely the same
pioneers, largely the study of logic as a foundation for mathematics has
been driven by a desire to respect types, whereas formal systems
developed for computation are by their very nature type defying. The
first is clear from the fixation of most of mathematical logic on first-
order logic, despite this a small flirtation with second-order logic, and
the standard set-theories based on notions of hierarchies (Zermelo-
Frankel, von Neumann-Bernays-Gödel, Morse, Kelly). And the last is
clear from the fundamental notion of a "stored program" in the "von
Neumann architecture". John von Neumann, in 1946 wrote a paper
with Arthur W. Burks and Hermann H. Goldstine titled "Preliminary
Discussion of the Logical Design of an Electronic Computing
Instrument" (Burks, et al., 1963). This paper begins by discussing the
four main components of a computer: the arithmetic logic unit,
memory, control, and input-output human interface. In other words, the
arithmetic logic unit, the control unit, and input-output. We quote from
Riley (1997):

To von Neumann, the key to building a general purpose device was in
its ability to store not only its data and the intermediate results of
computation, but also to store the instructions, or orders, that brought
about the computation. In a special purpose machine the computational
procedure could be part of the hardware. In a general purpose one the
instructions must be as changeable as the numbers they acted upon.
Therefore, why not encode the instructions into numeric form and store
instructions and data in the same memory? This frequently is viewed as the
principal contribution provided by von Neumann's insight into the nature
of what a computer should be.

He then defined the control organ as that which would automatically
execute the coded instructions stored in memory. Interestingly he says that
the orders and data can reside in the same memory "if the machine can in
some fashion distinguish a number from an order" [Burks, et al., p. 35].

And yet, there is no distinction between the two in memory. The
control counter (what we now usually call the program counter) contains
the address of the next instruction, and that word is fetched to be executed.
Whatever the control unit "believes" to be an order or to be data is treated
as such. One ramification of this is that the instructions can operate upon
other instructions, producing a self-modifying program. This has not been
considered good form for many years, because of the implications for
program debugging and the desire for reentrant code in some situations. It

285

is possible that new developments in artificial intelligence may bring fresh
attention to the possibilities afforded by this characteristic [Bishop 1986].

While von Neumann and his co-workers deserve the credit for
specifying the broad outlines of the contemporary electronic computer,
there is an important presaging in the work of Turing in his proof that
there could be a universal computing machine, where he used the idea
of coding up the machine tables of other Turing machines in terms of
numbers that could then be used as input to the universal machine.

The feature that we wish to draw attention to here is the fact that in
a general purpose computer, a program can be either function or
argument, depending on context. There is a similar feature in the λ-
calculus of Church (1941), or the combinatory logic of Curry and Feys
(1972), where an expression such as KI, or (λxλyx)(λxx) treats the
first term as a function and the second term as an argument. Indeed one
can have a term of the form MM, say II or 4.(λxx)(λxx), which treats
the very same term M as simultaneously standing for both a function
and an argument. So much for types!

The contrast during the first fifty year or so of the twentieth
century between the type conscious mainstream in mathematical
foundations, and the type insensitive undercurrent in the logic of
computation is quite striking. It reminds one of the (likely apocryphal)
stories of early aviation theorists proving the impossibility of powered
flight while the Wright brothers and others were working first on
models, and then on real airplanes.

4. The Routley-Meyer Semantics for Relevance Logic
We make what might seem a side trip, to discuss the so-called

"Routley-Meyer semantics" for relevance logic4, but we shall see in the
next section that it is closely related to our main journey. It is well-
known that Routley and Meyer (1972, 1973) provide a "Kripke-style"
semantics for relevance logic using a ternary accessibility relation R5.
Ignoring negation, a Routley-Meyer frame is a structure (U, R, 0) with
R ⊆ U3 and 0 ∈ U. A Routley-Meyer model adds an atomic "forcing
relation" ||-0 between states and atomic sentences (α.||-0 p). This can be

4 Anderson, Belnap, and Dunn (1992) contains a good discussion of this semantics,
including variants due to Urquhart and Fine discussed below.

5 There is an alternative "operational semantics" that we could be using. The ternary
relation Rαβγ is replaced using a binary operation on states α + β = γ (Urquhart) or
else α + β š γ (Fine). The first has also been used by Girard (1987) in the "phase
space" semantics for linear logic. The last is more general, extending as it does to
allow an underlying distributive lattice. Cf. Anderson, Belnap, and Dunn (1992) for
details. Cf. also Dofišen (1992).

286

extended inductively to provide a "forcing relation" between states and
compound sentences. Thus for relevant implication they have the
following (χ, α, β range over U)6:

χ |= ϕ → ψ iff (∀α, β : Rχαβ & α ||- ϕ imply β ||- ψ). (1)
They also gave a truth condition for "fusion" (intensional

conjunction):
χ |= ϕ ° ψ iff ∃α, β(Rαβχ & α ||- ϕ & β ||- ψ). (2)

Routley and Meyer thought of U as "set ups". A "set up" is like a
Carnapian state description except it can be inconsistent and/or
incomplete. Routley and Meyer also thought of U as something like a
set of possible worlds, but with the thought that these can be
partial/and or incomplete. We shall continue to use the more neutral
and trendy word "state", anticipating applications to computers.

Given the Carnap-Montague-Kripke idea of a "proposition" as a set
of possible worlds, a sentence ϕ can then be taken to be interpreted as
the "proposition" || ϕ || = {α : α ||- ϕ}.

Using propositions, we can rephrase the truth conditions above as:
|| ϕ → ψ || = || ϕ || ⇒ || ψ || =def {χ : (∀α, β : Rχαβ & α ∈ || ϕ ||

imply β ∈ || ψ ||)} (3)

|| ϕ ° ψ || = || ϕ || / || ψ || =def {χ : ∃α, β(Rαβχ & α ∈ || ϕ || &
β ∈ || ψ ||)} (4)

1. There are several things about this semantics that must be
mentioned:

2. Implicit in this semantics is a relation α š β (Routley and
Meyer would write "a<b") which can be defined as R0αβ: The
"Hereditary Condition" (adopted from intuitionistic logic)
imposes the requirement that if α ∈ || ϕ || and α š β, then β ∈ ||
ϕ ||. This in effect says that a proposition is not just any set of
states, but rather one that is closed upwards under š . It is
natural to regard this as "the information order".

3. Validity is defined not by reference to arbitrary states (as in the
Kripke semantics for modal logic and intuitionistic logic), but
rather by reference to the "zero states". Also it is a bit of an

6 In the definition below Routley and Meyer make the first position the "pivot", but
there is no reason why the second point cannot be the pivot. Then we get χ |= ψ ← ϕ
iff (∀α, β : Rαχβ & α ||- ϕ imply β ||- ψ). In previous papers I have often reversed
these arrows for reasons of wanting to match a convention of residuation theory due
to Pratt.

287

accident that Routley and Meyer pick out one such. In general
terms it does not hurt to add a set of them, Z ⊆ U.

4. The above observations motivate our defining a (ternary) frame
as a structure F = (U, R, š , Z), with š a partial-order on U
subject to the condition that ∃ζ∈Z(Rζαβ) iff α š β iff
∃ζ∈Z(Rαζβ) (Z-condition).

5. Validity in a frame (|=F ϕ) is then defined as: ∀α∈U, ∀ζ∈Z : ζ
||- ϕ. And validity in general (|= ϕ) is defined as validity in all
frames (∀F, |=F ϕ).

6. Every frame gives rise to an algebra of propositions A(F) =
(℘↑(F), ∧, ∨, ⇒, /, Z). The carrier set ℘↑(F) is just the set of
propositions A ⊆ U, i.e., subsets of U closed upwards under š .
∧ and ∨ are respectively intersection and union, and ⇒ and /
are defined as above. Z is of course simply the set of zero states
Z of the frame.

Remark 1. Urquhart (1972) had a simpler idea about how to model
relevant implication. His idea was to have a set U of "pieces of
information" α, β, χ, … Urquhart included the least (empty) piece of
information ∅ used to define validity. Urquhart postulates that the
pieces of information can be combined by a semi-lattice operation ∪.
For this reason it is common to refer to Urquhart's approach as the
"operational semantics", and to call the contrasting Routley-Meyer
approach the "relational semantics". While there are problems in
trying to extend Urquhart's idea to provide a semantics for the whole
of the system R of relevant implication (conjunction is ok, but both
disjunction and negation cause problems), Urquhart showed that we
can model the implicational fragment R→ with the following:

χ |= ϕ → ψ iff (∀α : α ||- ϕ imply χ ˜ α ||- ψ). (5)
Remark 2. The essential difference between the operational and
relational semantics can be put in terms of the former assuming
determinism: Given the state χ and the input α there is a unique
outcome χ(α) = χ ˜ α. The relational semantics rather assumes that
there can be many accessible outcomes χ(α) = {β : Rχαβ}.

Remark 3. Fine (1974), independently from Routley, Meyer, and
Urquhart, developed a semantics for relevant implication that in effect
combined their two ideas. In place of Rαβγ Fine writes: α°β ≤ γ. We
will call the Fine approach the "refined semantics" because it makes
explicit the binary operation implicit in the Routley-Meyer semantics.
If you look at the Routley-Meyer completeness proofs and at the

288

canonical model of theories, one sees that they have an operation
combining theories and also the relation of inclusion between theories.

There are many different ways to interpret these semantical ideas.

Thus for example think of χ as a "proof" of φ → ψ. In terms of the
operational semantics, χ determines a function taking proofs of φ to
proofs of ψ. In the relational semantics, χ determines a relation from
proofs of φ to proofs of ψ.

I suggested verbally (and it is referenced in the first Routley-Meyer
paper) that one somehow think of Rραβ as akin to Kripke's relative
accessibility relation, but relativized one step further. Rather than
saying that β is possible relative to α, we save that given ρ that β is
possible relative to α. In the early 1970's, Peter Woodruff (verbally to
me) suggested thinking of the ternary relation R as an indexed set of
binary relations {Rρ}ρ∈U, where each Rρ = {<α, β>: Rραβ}. It is a
short metaphorical step from this to the observation that one can think
of each state ρ as having a dual nature, first as a state and second as
determining a binary relation Rραβ between states α and β. This can
be given the "philosophical" reading: "the pair <α, β> exemplifies the
relation (determined by) ρ". Also it can be directly related to Frege's
distinction between "concept" and "object". We think of ρ as the
"object correlate" of the relation Rρ. We can take the further
metaphorical step of thinking of the state ρ as "static", and the relation
Rρ as "active". We are within a hair's breadth of von Neumann's
concept of a stored program7!

5. Interlude on Indeterminism
A theory is simply a set of sentences closed under adjunction and

(relevant) entailment. It is easy to see that theories behave well with
respect to conjunction. A theory contains a conjunction iff it contains
each conjunct. But once we add disjunction, theories lose respect.
While a disjunction is in a theory when either disjunct is, the converse
does not hold. It is standard to call a theory where the converse holds
prime. Given two theories T and T', it is natural to form their "fusion" T
° T'. This is done by considering the set of sentences of the form ϕ ° ϕ'
where ϕ ∈ T and ϕ' ∈ T', and closing it under adjunction and

7 We have therefore several reasons to regard Frege as a proto computer scientist.
Skipping this anticipation of the idea of a "stored program", and passing quickly over
the issues of formal logic and its relations to computer science, we get to the
important fact that Frege received funding from Zeiss (told to me by Werner
Stelzner). Corporate support is one of the most important marks of a computer
scientist.

289

entailment. Even when both T and T' are prime, their fusion is unlikely
to be prime. This is because of the R-theorem:

(ϕ → ψ) ° ϕ → ψ.
In particular ϕ → ψ1 ∨ ψ2 might be in T and ϕ might be in T', and

so ψ1 ∨ ψ2 would end up in their fusion T ⋅ T'. And yet there is no
reason that either one of ψ1 or ψ2 should end up there8.

This is why when we look at the canonical model we focus on the
ternary relation Rαβγ rather than the binary operation α • β. In Fine's
terms this is α • β ≤ γ, i.e., T • T' ⊆ T'', where T, T', and T'' can all be
prime. In the proof of the completeness theorem we build prime
extensions of T • T' in various possible ways, and in some of these 1 is
true and in others of these ψ2 is true.

6. Interpretation
We like to give Rραβ the "technological" reading: if the machine is

currently in state ρ, then if it were to enter state α, then state β is a
potential outcome (the pair <α, β> is a possible transition given ρ).

The reader may wonder why we need this ternary relation of
accessibility, and not just a binary one, which is more usual. And
indeed provides the framework for Pratt's dynamic logic. It might be
worth investigating how to extend dynamic logic to involve the ternary
accessibility relation.

It might be argued that if α is a state, then all the information that is
relevant to possible transitions is contained in α alone, and so there is
no reason to consider the "perspective" of ρ. Indeed, on a deterministic
conception of computation, the initial state would uniquely determine
all of the subsequent states. But this objection overlooks the fact that
we are working with partial states. One might think of this partiality in
terms of segregating parts of the machine so in considering Rραβ we
think of ρ as a state in that part of the machine that stores operations,
and α and β as states in that part of the machine that stores data. Or
one might think in terms of concurrent computing, with ρ being the
state on one processor, and α and β being states in another processor
(or complexes of processors including maybe the whole system) whose
operation is affected by ρ. This kind of approach leads to the idea that
states are of different types, and we are here wanting a type-free
system. But we think it is worth exploring typed systems as well,
particularly the division between operations and data. The information
in α may well be partial and the information in ρ may further restrict

8 Because the following is not an R-theorem:
(ϕ → ψ1 ∨ ψ2) → (ϕ → ψ1) ∨ (ϕ → ψ2).

290

the states β that are accessible from α. Note that states may even be
inconsistent. Think of a network where there are two machines that are
supposed to be mirror sites but by some glitch they are not. Readers
who are bothered by the thought of partial or inconsistent states should
be reminded that states exist at the "logical", as opposed to the
"physical" level. Two states of different machines can be identical even
though there are hardware differences between the two machines, and
of course this can also be true of the same machine at two different
times.

One way to look at things is that we are somehow combining ρ and
α and seeing whether this combination is contained in β: ρ + α š β.
The simplest mode of combination would just be in effect to take their
"union" ρ∨α. Thus thinking of a state as an assignment of the binary
bits 0 or 1 to variables, a variable xi will be assigned one of these
values by ρ∨α if either ρ or α assigns it that value. This is the minimal
requirement on a "union". But oops! What happens if say ρ assigns xi
the value 1 and α assigns it 0? One could imagine various answers here
as to what value ρ + α assigns. E.g., it could assign no value, it could
assign an error message, it could assign some principled choice (say,
when in doubt take the maximum), or, most radically but perhaps most
naturally for the concept of a "union", we give up on the idea that
assignments are consistent and let it assign both values. But if we
require that the assignments ρ, α and β must be consistent, one of the
most interesting things to do is to take the maximum. This ensures to
Rραβ ρ š β and α š β, which as can be seen from Dunn (1993c) gives
a ternary accessibility relation which provides the basis for a semantics
for intuitionistic implication.

There is a related ternary relation in Barwise (1993). Barwise uses
the notation s1 |→c s2 to indicate the 3-placed relation that exists when
the two "sites" s1 and s2 are connected by the "channel" c. In the
notation of Routley and Meyer this could be expressed as Rs1cs2.
Channels hence determine binary relations between sites, but they need
not be identified with those relations.

Barwise leaves explicitly open the idea that sometimes channels
can be sites and vice versa. What we have in our representation of
relation algebras is the totally "untyped" case where every site is a
channel and vice versa.

7. The main idea
I wish to give here the main idea. Suppose we have a ternary frame

with a set of states U, and a subset A of U. A can be thought of as a set
of states, i.e., a proposition. So A is quite static. But, and this is than

291

main idea, it can be turned in for the set of relations determined by
those states, and those relations can of course be regarded as taking
states to states. So A is at the same time quite dynamic. Here we model
the duality implicit in von Neumann's concept of a stored program, or
Frege's distinction between concept and object/function and argument.
One and the same thing can be both.

Given a state ρ ∈ U, Rρ = {<α, β>: Rραβ}. By R[A] let us mean
the set of relations determined by A, i.e., R[A] = {Rα : α ∈ A}.

Suppose we have two such propositions A and B. We can turn A in
for the set R[A] of relations which it determines, and similarly we can
get R[B]. We can then do various things with R[A] and R[B]. Thus as
one example we can take R[A] and "apply" it to B:

R[A](B) = {γ : ∃α ∈ A, ∃β ∈ B(Rαβγ)},
getting all the states we can get to from B using a relation in R[A];
treating A as a program, B as data, and applying A to B. We shall return
to this idea in the next section when we examine how to model
combinatory logic.

This uses only the implicit relation character of A. But we can use
the implicit relational character of both A and B; taking the relations in
R[A] and the relations in R[B] and forming their relative products in all
possible ways. Let us recall that given two relations R and S their
relative product is defined by

x(R ⊗ S) ⇔ ∃u(xRu & uRy).
So we define

R[A] ° R[B] = {Rα ⊗ Rβ : α ∈ A, β ∈ B}.
This is like viewing both A and B as programs, and composing A

with B : A ⋅ B. We shall return to this idea in a short while when we
examine how it can be used in the representation of relation algebras.

8. Models for combinatory logic
Dunn and Meyer (1997) gives particularly simple models for

combinatory logic based on the Routley-Meyer ternary semantics for
the relevance logic R9. Various conditions have to be put on the ternary
accessibility relation to get models for the logic R. It is well-known by
now that by fussing with those conditions one can get models for
various logics closely related to R.

9 As is spelled out in Dunn and Meyer (1997), other models for combinatory logic
have been provided by various researchers, including D. Scott, G. Plotkin, and R.K.
Meyer, M. Bunder and L. Powers.

292

We illustrate this with a simple example. The logic R has the
"contraction axiom"

(ϕ → (ϕ → ψ)) → (ϕ → ψ),
which corresponds to Gentzen's "structural rule" of contraction:

Γ, ϕ, ϕ, ∆ |- ψ
––––––––––––.
 Γ, ϕ, ∆ |- ψ

This amounts to saying that ° "duplicates", i.e., A ° B ⊆ (A ° B) ° B.

On the accessibility condition we need the postulate:
Rαβγ ⇒ ∃χ(Rαβχ & Rχβγ).

In a more or less obvious diagram this becomes:

 γ γ

α β ⇒ • β

 α β

We choose to algebraize the combinators as a combinatory poset,
i.e., as a partially-ordered groupoid (X, ≤, °, C), where X is thought of
as a set of untyped functions, ≤ is a partial order on X (thought of as
"reducibility"), ° is a binary isotonic operator on X (thought of as
"application"), and C ≤ X10. C is thought of as a set of combinators, and
we shall call its members combinator elements. Each combinator
element c ∈ C is subject to some postulate of the form

 cx1 … xm ≤ τ(x1, …, xm), (6)
where cx1 … xm are variables, ° is indicated by concatenation, the
sequence cx1 … xm is a left-associated sequence, i.e. is of the form
(((cx1)x2)) … xm), and τ(x1, …, xm) is a term constructed only out of

10 Note that we use ≤ where Curry and Feys (1972) use ≥. Note also that we do assume
the usual conventions of suppressing ° in favour of juxtaposition, and assuming
associativity to the left.

293

the variables x1, …, xm (not necessarily all of them) and °11. τ(x1, …,
xm) can be regarded as a sequence containing some or all of the
variables x1, …, xm, with parentheses scattered through it so as to
indicate binary grouping of any pattern.

As examples consider a few of the more common combinators:
 ix ≤ x (7)
 kxy ≤ x
 cxyz ≤ xzy
 wxy ≤ xyy
 bxyz ≤ x(yz) (8)
 sxyz ≤ (xz)(yz)

The notion of a combinatory poset is similar to the notion of a
"combinatorial algebra" in Barendregt (1981), except that he bases
things throughout on equality rather than the inequality, and his
combinators are required to be S, K.

It is well-known that contraction corresponds to the combinator W.
Using inclusion in place of reduction, the postulate for that combinator
is WAB ⊆ ABB. If we view W, A, and B as sets of states, we need the
following postulate:

∃m ∈ W, ∃χ(Rmαχ & Rχβγ) ⇒ ∃χ(Rαβχ & Rχβγ)
The left-most terminus is "kicked out of the way" by the

combinator state m:

 γ γ

 •
 β ⇒ • β

∃m α
 α β

11 Because of the form of these laws, the combinator elements correspond to what have
been called "proper" combinators (cf. Curry and Feys (1972), and which may
beviewed as closed lambda terms. We donotbother with the more accurate but more
awkward terminology "proper combinator poset".

294

Conditions can thus be put on ternary frames that force various
subsets to behave like combinators12.

Using this method it was shown in Dunn and Meyer (1997) that
every combinatory algebra can be represented using an appropriate
ternary frame.

9. Models for the algebra of relations
In Dunn (2001) it was shown how to represent relation algebras using a
modified version of Routley-Meyer frames that are not unlike those
they used to model relevance logic13. We will not repeat definitions
here, but part of the trick was to give a carefully layered definition of
relation algebras that showed the close connections to relevance logic
and which matched a carefully layered definition of the appropriate
Routley-Meyer frames.

We begin with the notion of lattice-ordered monoid (L, ≤, ∨, °, e),
where (L, ≤, ∨) is a lattice and (L, ≤, ∨, °, e) is a monoid, with °
distributing over ∨ from both directions. It follows that ° is isotone in
each of its arguments.

We recall that a l.o.m. is said to be residuated if it had two
additional binary operators → and ← (called the right and left
residuals) satisfying:

x ° y ≤ z iff y ≤ x → z iff x ≤ z ← y. (9)
De Morgan and Peirce observed in the last century that these

structures arise naturally in the context of the algebra of relations (cf.
e.g., Maddux (1991)). We think of relations in the usual way as sets of
ordered pairs. Given a set X and two binary relations R and S on X, the
relative product R ° S = {(x, y) : ∃z((x, z) ∈ R & (z, y) ∈ R)} is an
associative operation, and e is the identity relation (restricted to X).
Then R → S = {(x, y) : ∀z((z, x) ∈ R implies (z, y) ∈ R)} and S ← R =
{(x, y) : ∀z((x, z) ∈ R implies (y, z) ∈ R)}.

But relative product and the residuals are not the only important
operations on relations. There is also the converse R–1 = {(y, x) : (x, y)
∈ R)}. Given a lattice, a unary operation x–1 (which we shall think of as

12 Alternatively, if one is interested not just in one-way reduction but rather equality of
combinators, one can define a combinator as a set of states satisfying a given
condition. For example:
W = {m : ∃χ(Rmαχ & Rχβγ) ⇒ ∃χ(Rαβχ & Rχβγ)}.

13 As explained in detail in Dunn (2001), it was pointed out to me by R. Maddux that
this idea was foreshadowed by Lyndon, and by Jénsson and Tarski, although my
treatment is more explicit and general and makes the connections to relevance logic
and other substructural logics.

295

"conversion") is an automorphism of period two when it is a 1-1, order
preserving, and of period two. i.e., (x–1)–1 = x.
Definition 4. A structure (L, ∧, ∨, °, →, ←, –, –1, e) is a relation
algebra iff

(L, ∧, ∨, –) is a Boolean algebra, (10)
(L, ∧, ∨, °, →, ←, e) is a residuated lattice ordered monoid, (11)

x–1 is a lattice automorphism of period two on (L, ∧, ∨), (12)
(x ° y) –1 = y–1 ° x–1 . (13)

a → b = –(a–1 ° –b), b ← a = –(–b ° a–1). (14)
The above definition derives from Tarski (1941), and can be found in
Dunn (2001). This definition is presented in a way that makes it similar
to the definition of a Boolean De Morgan monoid, which is the
algebraic structure corresponding to the relevance logic R supple-
mented with Boolean negation in addition to its standard De Morgan
negation. These structures were in effect introduced by Meyer and
Routley (1973) and studied more explicitly as algebraic structures by
Meyer (1979), where he explicitly introduced an operator x*. Meyer
observes that one can then define the usual De Morgan complement
from the Boolean one and the * operator as follows:

~x = –(x*). (15)
Putting –1 in place of * we get:

~x = –(x–1)
which was anticipated as a definition of a negation-like operator by
Białynicki-Birula and Rasiowa (1957).

14 above does not look very pretty from a logical point of view, but
it can be replaced equivalently with:

a → b = ~(~b ° a), b ← a = ~(a ° ~b). (16)
The only differences between a Boolean De Morgan monoid and a

relation algebra is that for a De Morgan monoid we assume in addition
that ° is commutative and square increasing (x ≤ x ° x). This last
corresponds to contraction.

Next we turn to the ternary frames appropriate to representing
relation algebras. We start with a plain vanilla ternary frame F = (U, R,
š , Z) and add to it a unary map ∪ on U into itself such that for χ ∈ U.

χ∪∪ = χ (period two). (17)

296

Such a map is commonly called an involution14. We also add
(writing χˇ in place of χ∪).

Rαβγ only if Rβˇαˇγˇ (tagging). (18)
Rαβγ iff Rγˇαβˇ (antilogism) (19)

Let us define for A ∈ P(U)↑,
A–1 = {αˇ : α ∈ A}. (20)

By virtue of (17), this is equivalent to:
A–1 = {α : αˇ ∈ A}. (21)

This does not yet give us the class of frames appropriate for
relation algebras, because we have to assure that ° is associative.

Let us begin by looking at two notational conventions of Routley
and Meyer:

R(αβ)γδ =def ∃χ(Rαβχ & Rχγδ), (22)
Rα(βγ)δ =def ∃χ(Rαχδ & Rβγχ). (23)

Routley and Meyer actually write "R2" where we write simply "R"
above, but for reasons of both suggestiveness and simplicity we shall
often simply let the number of terms affixed tell that there is a power.

One of the requirements on a Routley-Meyer frame is that these
two compositions are equivalent:

R(αβ)γδ iff Rα(βγ)δ (24)
This is precisely what is needed to assure that

A ° (B ° C) = (A ° B) ° C (associativity)
In this section we shall depart from our convention of viewing the

binary relation hidden inside a ternary relation as indexed by the first
state. For reasons that have nothing to do with anything but making
things look pretty we shall view it as indexed by the second state15. So
in this section only, Rρ = {(α, β) : Rαρβ}.

Let us define the composition of two "binary relations" ρ and σ:
α(Rρ ⊗ Rσ)β iff ∃χ(Rαρχ & Rχσδ)

Clearly using this definition and R-associativity, we obtain

14 Following Routley and Meyer, this involution is customarily denoted by * in the
relevance logic literature. Here we instead use ∪ because in the literature on relations
* is customarily used for the "ancestral".

15 This has something to do with the mathematical tendency to use infix notation for
relations and prefix notation for functions.

297

α(Rρ ⊗ Rσ)β iff R(αρ)σβ iff Rα(ρσ)β, (25)
where the right-hand sides of the last two conditions are understood
using the compositional notations of Routley-Meyer. One could write
(25) as

α(Rρ ⊗ Rσ)β iff R(ρσ)αβ. (26)
but one should be clear that "(ρσ)" is a mere notation and does not
denote an actual point.

The above expresses what one might label a "notional
homomorphism". But it can be made into an actual homomorphism if
we "refine" the Routley-Meyer relation into smaller bits, in effect
interpreting Rαβγ as α • β š γ. We can the restate ?? as:

Rρ•σ = Rρ ⊗ Rσ.
We can also easily see that

Rρˇ = (Rρ)–1.
Proof. αRρˇβ iff Rαρˇβ (antilogism) Rρˇβˇαˇ iff (tagging period

two) Rβρα iff βRρˇα iff α(Rrˇ)–1β.
It turns out that one can show that λρRρ is a one-one function

taking states to binary relations on states, using the Z-Condition in the
definition of a frame. So we in fact have an isomorphism preserving
"relative product" and "converse") between states and binary relations.

Lyndon (1950) showed that not every relational algebra can be
interpreted as a set of relations, but using the observations above we
can easily show that this can be done one type-level higher. Given a set
of states A, let RA = {Rα : α ∈ A}. For any frame U, we have just
observed that RU is closed under relative product and converse and is
in one-one correspondence with U. This means that we can give "point-
wise" definitions: RA ° RB = {(Rα ⊗ Rβ) : α ∈ A, β ∈ B} and RA

–1 =
{Rα

–1 : α ∈ A}. Note further that RA ∩ RB = RA∩B, RA∪B = RA ∪ RB,
and RU–A = RU – RA.
Theorem 5. Every relation algebra (A, ∧, ∨, –, °, –1) is isomorphic to a
set of sets of relations, with ∧ interpreted as union, ∨ as intersection, –
as complement relative to a certain subset of ℘(U × U), and ° being
point-wise relative product, and –1 being point-wise converse.

10. Glimpses Ahead: Pratt's Dynamic Logic and Hoare Logic
Proof. V. Pratt (1980) makes a distinction between states and

programs and defines things such as [p]φ to mean intuitively that the

298

sentence φ is true of every state α that arises while the program p is
executing.

In symbols we express this as
χ ||- [p]φ iff ∀β(χRpα ⇒ β ||- φ), (27)

where χRpα is read "the state α is accessible from state χ by running
the program p". Note that Rp is an accessibility relation indexed by the
program p. Pratt assumes a non-deterministic notion of computation or
else this could be replaced by the notion p(χ) = α.

As we have seen, any state ρ can be thought of as determining an
accessibility relation Rρ. Note this is "rho" not "pee" – we are talking
about a state and not a program. Pratt's dynamic logic has accessibility
relations indexed by programs. A state can be viewed as an assignment
to variables (storage location) of the values 0, 1. If we focus on the
substate where the program is stored we get a partial assignment. Since
thus a program can be viewed as a partial state, using ρ in place of p
generalizes Pratt.

Another way to go is to look at a program as not a single (partial)
state but rather as a set of states (intuitively the set of states that
implement the same program). This suggests we write 27 in an untyped
way, replacing the single state ρ with a set of states (a proposition) B.
We can then rephrase the above as:

χ ||- [B]φ iff ∀α, ∀ρ ∈ B(χRpα ⇒ α ||- φ),
and we can rephrase this further, replacing the proposition B with the
sentence ϕ that expresses it:

χ ||- [ψ]φ iff ∀α, ∀ρ ∈ |ψ| (χRpα ⇒ α ||- φ),
where |ψ| = B = {β : β ||- ψ}.

Another possible application of ternary frames is to Hoare's (1969)
"Logic of Programs", but we only mention this here. It would also be
nice to model action algebras (cf. Pratt (1991)).

REFERENCES
1. Anderson A.R., Belnap N.D. and Dunn J.M. et al (1992), Entailment: The

Logic of Relevance and Necessity, vol. 2, Princeton University Press
(Princeton).

2. Barendregt H.P. (1981), The Lambda Calculus: Its Syntax and Semantics,
North -Holland Studies in Logic and the Foundations of Mathematics, 103,
(Amsterdam) Elsevier Science Publishers (Amsterdam).

3. Barwise J. (1993), "Constraints, Channels, and the Flow of Information", in
Situation Theory and its Applications, ed. by S.Peters and D. Israel, CSLI
Lecture Notes, vol. 3, University of Chicago Press (Chicago).

299

4. Bialynicki-Birula A. and Rasiowa H. (1957), "On the Representation of
Quasi-Boolean algebras", Bulletin de l'Acadfiemie Polonaise des Sciences,
5, 259-261.

5. Bishop P. (1986), Fifth Generation Computers,. Ellis Horwood Limited
(Chichester, England).

6. Boole G. (1847), Mathematical Analysis of Logic, London, 1847.
7. Burks A.W., Goldstine H.H. and Neumann J. von. (1963), "Preliminary

Discussion of the Logical Design of an Electronic Computing Instrument",.
in Taub, A. H., editor, John von Neumann Collected Works, The Macmillan
Co.(New York), Volume V, 34-79.

8. Church A. (1941), The Calculi of Lambda Conversion, Princeton University
Press (Princeton).

9. Curry H.B. and Feys R. (1972), Combinatory Logic, vol. I, North-Holland
Publishing Company (Amsterdam).

10. Dunn J.M. (1991), "Gaggle Theory: An Abstraction of Galois
Connections and Residuation with Applications to Negation and Various
Logical Operations", Logics in AI, Proceedings European Workshop
JELIA 1990, ed. J. van Eijck, LNCS 478, Springer-Verlag (Berlin).

11. Dunn J.M. (2001), "A Representation of Relation Algebras Using
Routley-Meyer Frames", forthcoming in Logic, Language, Computation:
Essays in Honor of Alonzo Church, eds. C. A. Anderson and M. Zeleney,
Kluwer Academic Publishers (Dordrecht).

12. Dunn J.M. and Meyer R.K. (1997), "Combinatory Logic and Structurally
Free Logic", Journal of the Interest Group in Pure and Applied Logic, 5.

13. Fine K. (1974), "Models for Entailment", Journal of Philosophical Logic,
3, 347-372.

14. Gärdenfors P. and Makinson D. (1988), "Revision of Knowledge Systems
Using Epistemic Entrenchment", in Proceedings of the Second Conference
on Theoretical Aspects of Reasoning about Knowledge, ed.M. Vardi,
Morgan Kaufmann (San Francisco), 83-95.

15. Geach P.T. and Black M. (1960), Translations from the Philosophical
Writings of Gottlob Frege, Basil Blackwell (Oxford).

16. Hoare C.A.R. (1969), "An Axiomatic Basis for Computer Programming,
Communications of the ACM, 12, 576-585.

17. Lyndon R.C. (1950), "The Representation of Relation Algebras", Annals
of Mathematics, ser. 2, 51, 707-729.

18. Maddux R. (1991), "The Origin of Relation Algebras in the Development and
Axiomatization of the Calculus of Relations", Studia Logica, 91, 421-455.

19. Meyer R.K. (1979), "A Boolean Valued Semantics for R", Research Paper
no. 4, Logic Group, Research School of Social Sciences, Australian
National University, Canberra.

20. Meyer R.K. and Routley R. (1972), "Algebraic Analysis of Entailment",
Logique et Analyse, n.s., 15, 407-428.

21. Meyer R.K. and Routley R. (1973), "Classical Relevant Logics (I)", Studia
Logica, 32, 51-66.

22. Pratt V., "Six Lectures on Dynamic Logic", Foundations of Computer
Science III, part 2, Mathematical Centre Tracts (Amsterdam), 109, 53-82.

300

23. Pratt V. (1991), "Action Logic and Pure Induction", Logics in AI,
Proceedings European Workshop JELIA 1990, ed. J. van Eijck, LNCS
478, Springer-Verlag.

24. Riley H.N. (1997), "The von Neumann Architecture of Computer
Systems", http://www.csupomona.edu/~hnriley/www/VonN.html.

25. Routley R. and Meyer R.K. (1972), "The Semantics of Entailment, II-III",
Journal of Philosophical Logic, 1, 53-73 and 192-208.

26. Routley R. and Meyer R.K. (1973), "The Semantics of Entailment I" in
Truth, Syntax and Modality, ed. H. Leblanc, North-Holland Publishing
Company (Amsterdam), pp. 199-243.

27. Tarski A. (1941), "On the Calculus of Relations", The Journal of Symbolic
Logic, 6, 73-89.

28. Urquhart A. (1972), "Semantics for Relevant Logics", The Journal of
Symbolic Logic, 37, 159-169.

301

	TERNARY RELATIONAL SEMANTICS AND BEYOND: Programs as arguments (data) and programs as functions (programs)
	1. Introduction
	2. Frege and Boole
	3. Von Neumann's concept of a "stored program"
	4. The Routley-Meyer Semantics for Relevance Logic
	5. Interlude on Indeterminism
	6. Interpretation
	7. The main idea
	8. Models for combinatory logic
	9. Models for the algebra of relations
	10. Glimpses Ahead: Pratt's Dynamic Logic and Hoare Logic
	REFERENCES

