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GAMES WITH COMMON BELIEF  
ON PAYOFF FUNCTION 

I. Introductory Remarks and Definitions 
To introduce a definition of a game in normal form, we need the 

following concepts: the set I of players; the (pure) strategy sets SI for 
each agent i ∈ I; the payoff functions pi (s1, … , sI) that assign payoffs 
for all i ∈ I as determined by a possible strategy combination (s1, … , sI). 

Definition 1. A game Γ in normal form is a triple (I,(Si) i ∈ I,(pi) i ∈ I). 
A proposition P is common knowledge if all players know that P, 

and know that all players know that P, and know that all players know 
that all players know that P, and so on up to any degree of iteration. A 
proposition P is common belief if all players believe that P, and it is 
common knowledge that all players believe that P. 

Consider a finite set of propositions P = {P1, … , Pn}. The 
probability distribution µ on P is called probabilistic common belief if 
for all players, their doxastic attitude to P1, … , Pn is governed by µ, 
and this is common knowledge. Consider now a game Γ = (I, (Si) i  ∈ I, 
(pi) i ∈ I),   and a finite set B = {(p1 i) i ∈ I, … , (pn i) i ∈ I} such that for 
each 1≤j≤n and for each i∈I, (pj

i) is an (alternative) payoff function 
(pj

i) (s1, … , sI). 
Definition 2. Given Γ = (I, (Si) i  ∈ I, (pi) i ∈ I) and B = {(p1

i) i ∈ I, …, 
(pn i) i ∈ I}, ∆ = (Γ, µ[B]) is a game with common belief on payoff 
function (g.c.p.b.), where µ[B] is a probability distribution on B. 

Given a g.c.p.b. ∆ = (Γ, µ[B]), we will call Γ the ontological 
component of ∆, and µ[B], its doxastic component, their intended 
interpretation being that (i) the players are really in the situation 
determined by (pi) i ∈ I; and (ii) their probabilistic common belief about 
what is their situation like is (represented by) µ[B]. 

Note that standard games in normal form constitute (or, better, 
correspond to) a proper subclass of all g.c.p.b.’s. To be (or: to 
correspond to) a standard game in normal form, a g.c.p.b., ∆ = (Γ= (I, 
(Si) i  ∈ I, (pi) i ∈ I), µ[B]), has to meet the two following conditions: 

(i)  (pi) i ∈ I ∈ B; 
(ii)  µ((pi) i ∈ I) = 1; 
    for any 1≤ j ≤n, 
  µ((pj

i) i ∈ I) = 0   if (pj
i) i ∈ I ≠ (pi) i ∈ I. 
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In theory of games with common payoff beliefs, like anywhere else 
in game theory, the central notion is that of a solution of the game at 
issue. But with g.c.p.b.’s, unlike anywhere else in game theory, at work 
is a distinction between the players’ subjective image of the game and 
the game as it is in reality. The players deliberate and act upon their 
common beliefs about their situation; and when they have reached the 
outcome of their combined action, they may be surprised at the value of 
their payoffs, if the image they were acting upon was distorted. The 
solution of a g.c.p.b. is a function of the players’ subjective beliefs, but 
the resulting payoffs are a function of both the beliefs and the actual 
reality. 

Note that, generally speaking, the concepts involved in a definition 
of game solution may differ across classes of games: from maximin 
strategies for a two-player zero-sum game, via dominant strategy 
equilibrium, via iterated dominance equilibrium, to Nash equilibrium, 
and the many kinds of its refinement. The bulk of theory of g.c.p.b.’s 
may be applied to the concept of game solution as construed in terms 
of any of the above-listed notions. Nevertheless, for the sake of 
definiteness, we will presume in what follows that each time we 
consider a game with a unique Nash equilibrium, the concept of game 
solution should be understood as resulting from the notion of Nash 
equilibrium. 

We are now in a position to construct a definition of doxastic 
solution of a g.c.p.b. under doxastic certainty: 

Definition 3. Given a g.c.p.b. ∆ = (Γ= (I, (Si) i  ∈ I, (pi) i ∈ I), µ[B]), 
such that for all (pj i) i ∈ I ∈ B, except one, namely: (pJ

i) i ∈ I, µ(pj i) = 0, 
doxastic solution for ∆ is the solution of game   

Γ* = (I, (Si) i  ∈ I, (pJ
i) i ∈ I). 

To define the concept of doxastic solution in a general case, 
consider a game Γ = (I, (Si) i  ∈ I, (pi) i ∈ I) whose payoff function maps 
strategy combinations to expected payoff values, relative to a 
probability distribution, rather than to just the numerical values of the 
payoffs. Such a game will induce a notion of a game solution exactly in 
the same way in which a standard (matrix) game does, - because after 
the expected payoff values have been calculated, the payoff function 
will have mapped strategy combination to numerical values, exactly in 
the same way in which the payoff function in a standard game does. 

Definition 4: Doxastic solution of a g.c.p.b. (general case). Given 
a g.c.p.b. ∆ = (Γ= (I, (Si) i  ∈ I, (pi) i ∈ I), µ[B]), denote the numerical 
payoff function resulting from probability distribution µ[B], (p(µ[B])i)i 

∈ I. Doxastic solution of ∆ is the solution of game Γ* = (I, (Si) i  ∈ I, 
(p(µ[B])i)i ∈ I). 
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II. Comparing doxastic and ontological payoffs 
Definition 5. If a g.c.p.b. ∆ = (Γ= (I, (Si) i  ∈ I, (pi) i ∈ I), µ[B]) has a 

doxastic solution (s1, …, sI), doxastic payoff combination for ∆ is the 
combination (p1(s1, …, sI), …, pI(s1, …, sI)). 

Definition 6. Given a g.c.p.b. ∆ = (Γ, µ[B]), if Γ has a solution (s1, 
…, sI), we will call it ontological solution of ∆, and the combination 
(p1(s1, …, sI), …, pI(s1, …, sI)), ontological payoff combination for ∆. 

Definition 7. A g.c.p.b. ∆ = (Γ, µ[B]) is doxastically negative 
(neutral, positive, incomparable), if its doxastic payoff combination is 
Pareto-dominated by (respectively: coincides with, Pareto-dominates, 
is Pareto-incomparable with) its ontological payoff combination. 

Definition 8. Given a game Γ = (I, (Si) i  ∈ I, (pi) i ∈ I) in normal form 
and a set B of possible alternatives to (pi) i ∈ I, the <Γ, B >-class is the 
class of all g.c.p.b.’s of the form ∆ = (Γ, µ[B]) with µ[B] ∈ Μ[B], 
where Μ[B] is the set of all probability distributions over B. 

A <Γ, B >-class can be usefully partitioned into four domains: (i) 
negative; (ii) neutral; (iii) positive; and (iv) incomparability domain, 
according to whether the members of a domain are doxastically 
negative, neutral, positive or incomparable, respectively. An intuitive 
significance of such a partition should be clear: we are interested in the 
question of what  happens if the players move from their current 
(perhaps, distorted and/or incomplete) image of the game to its correct 
and complete image. 

To the four domains, there correspond the four following answers 
in the same order: 

– each player would have their solution payoff strictly increased; 
– all the solution payoffs would remain the same; 
– each player would have their payoff strictly diminished; 
– the result would differ for different players. 

III.  The issue of the emptiness of the positive domain 
Of course the most surprising case would be there, if we find the 

positive domain non-empty. On the first glance such a case seems 
counter-intuitive: How can it be that correct and complete knowledge 
of the situation can do harm to all the players? Is not knowledge always 
power – at least for some of them? 

To give one interesting answer to the above questions, we need a 
definition of Pareto-suboptimality: 

Definition 9. A game Γ = (I, (Si) i ∈ I, (pi) i ∈ I) in normal form is 
Pareto-suboptimal, if (i) Γ has a unique Nash equilibrum (s1, …, sI), 
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and (ii) there is a combination of strategies (s*1, …, s*I) such that for 
every i  ∈ I, pi (s*1, …, s*I)  > pi (s1, …, sI). 

Now it is straightforward to demonstrate the following fact: 
Fact: For any Pareto-suboptimal game Γ = (I, (Si) i  ∈ I, (pi) i ∈ I) in 

normal form, there exists a set B of possible alternatives to (pi) i ∈ I 
such that the positive domain of <Γ, B >-class is not empty. 

Proof: Let B = {(p*i) i ∈ I }, where (p*i) i ∈ I  is determined by the 
following conditions: 

 (I) for every i  ∈ I, p*i (s*1, …, s*I) = 1; 
(II) for every i  ∈ I, p*i (π) = 0, where (π) is a combination of 

strategies other than (s*1, …, s*I). 
It is immediately obvious that, given such Γ and B, the <Γ, B >-

class has exactly one member, and that member belongs to its positive 
domain. 

 
Given the above fact, the framework of g.c.p.b.’s may be helpful 

for the task of investigating positive effects of shared epistemic 
imperfections in the context of Pareto-suboptimal interactive situations  
– e.g., the Prisoners’ Dilemma, the problem of collective action, and 
the like. 
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