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WHAT IS PROPOSITIONAL CLASSICAL LOGIC? 
(A Study in Universal Logic)2 

Abstract. The aim of this paper is to try to characterize classical 
propositional logic (CPL) with the notion of mathematical structure.  

We start by justifying this approach. We recall the importance and 
significance of the notion of structure in mathematics and in logic. We 
explain the idea of a general theory of logics based on structures, 
Universal Logic. 

CPL is not one structure but a class of equivalent structures, CPL-
structures. We survey a series of structures that can be considered as 
CPL-structures. The main problem is to find a notion of equivalence 
which permits to gather into a whole this multiplicity.  

We show in particular that the modern concept of equivalence of 
structures, based on the notion of expansion by definition and 
isomorphism, is not adequate to define a satisfactory notion of 
equivalence that will define the class of CPL-structures. An alternative 
definition, postmodern equivalence, is introduced.  

It appears that this tentative of characterization of the class of 
CPL-structures is not only relevant for Universal Logic, but also for the 
general theory of mathematical structures, since the case of CPL-
structures shows the insufficiency of the modern concept of equivalence 
between structures.  
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1. Classical propositional logic, Universal Logic  
and the theory of structures 

Logic is nowadays a very vast and varied field and probably there is 
no logician who has a global knowledge of it, from inaccessible 
cardinals to lambda calculus, from cylindric algebra to the 
hyperarithmetical hierarchy, from stability theory to quantum logic. On 
the other hand, there is a part of logic that every logician certainly 
knows, it is classical propositional logic (CPL hereafter).  

So it seems that the question "What is classical propositional 
logic?" does not have to be asked since everybody knows of course 
what is CPL. But there are several ways of "knowing". In some sense 
everyone knows what is a cat, a number or light, mainly because one is 
acquainted with these things. But few people, if any, are able to give 
proper definitions of a cat, a number or light. To give such definitions 
people turn either to philosophy or science. 

Maybe people think that CPL is already scientific and well defined. 
So they think that someone who asks "What is CPL?" can only be a 
helpless philosopher. But we must remember that some hundred years 
ago mathematicians thought that people like Frege and Russell were 
helpless philosophers. 

To the question "What is CPL?", a bright young logician could 
answer: "Very easy, two-valued truth-tables are CPL, such or such 
Hilbert-type axiomatic system is CPL, such or such Gentzen-type proof 
system is CPL, such or such tableau system is CPL, Boolean algebra is 
CPL, all this and many more is CPL." We can reply to this bright young 
logician in the same way as Socrates to Theaetetus: "How generous and 
open-handed of you! You were asked for one thing, but you're offering 
several, and a variety instead of something simple" (Plato, Theaetetus, 
146d). 

One way to give a definition by comprehension of CPL rather than 
by extension, is to consider CPL as a structure. This is useful in 
practice: one can present the completeness theorem saying that two-
valued truth-tables and a given Hilbert-type axiomatic system define 
the same structure. As it is known, the notion of structure has been 
crucial to reorganized and unified mathematics and is the cornerstone 
of modern mathematics3. Following the structuralist approach to 
mathematics, a general theory of logics has been developed under the 
name Universal Logic. It is a theory of logical structures in the same 

3  There are a lot of interesting philosophically oriented papers by Bourbaki and his 
friends about the notion of mathematical structure. Most of these papers are difficult 
to find and not very well-known. The reader may have a look at the most famous [3]. 
He may also consult the historical book of Corry [6]. 
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way as Universal Algebra is a theory of algebraic structures (see [1], 
[2])4. 

But what is a logical structure? That is the question. In fact we will 
see in this paper that it is even difficult to answer this question for the 
most well-known logical structure, i.e. CPL. 

The problem is that CPL does not appear as one structure but as a 
multiplicity of structures, CPL-structures. Then if we want to properly 
define CPL according to the structural approach of Universal Logic, we 
must find a way to unify this multiplicity into a whole, through a 
relation of equivalence between structures. 

As it is known, a Boolean algebra can be represented as a Boolean 
ring or as a distributive complemented lattice. These two structures are 
equivalent. Boolean algebra is a class of equivalent structures, and a 
Boolean algebra is any member of this class. Everything is clear and 
there is no problem at all. 

But the difficulty with CPL-structures is that the standard notion of 
equivalence between structures does not applied straightforwardly to it. 
Equivalence between structures is a fundamental notion of the general 
theory of structures and CPL-structures happen to challenge it. If we 
consider the general theory of structures as part of the foundation of 
mathematics (conceptual foundation by opposition to the axiomatic 
approach, cf [8]), we can say that Universal Logic, through the simple 
case of CPL, challenges the foundation of mathematics. 

After presenting the standard notion of equivalence and the 
concepts of modern mathematical structuralism on which it is based, we 
present a series of different CPL-structures. The difficulty to apply the 
standard notion of equivalence to these structures leads us to develop an 
alternative notion of equivalence based on postmodern structuralism. 

2. Modern mathematical structuralism 
Modern mathematical structuralism has to be understood by 

contrast with post-modern mathematical structuralism that we will 
introduce later on, also by contrast with modern logical structuralism. 
Logical structuralism has been developed within model theory. It is 

4  The structuralist approach in logic can be traced back to Tarski (cf [13]), it has been 
further developed in Poland especially by Suszko's group in the sixties and the 
seventies (cf. [4] [5]) and more recently by the Barcelona logic group [7]. People like 
Suszko and his followers tend to consider logical structures as special cases of 
algebraic structures. Whether this view is correct or not depends on some points 
which will be discussed in the present paper. Our idea is to consider Universal Logic 
as independent of Universal Algebra, rather than a part of it. This view was already 
held by Porte ([11]). His idea was that logical structures were fundamental mother 
structures in the sense of Bourbaki. 

268 

                                                      



fundamentally dicephalous, there is on one side the reality of the 
structure, on the other side the language of the structure. In 
mathematical structuralism we will consider only the "reality" of the 
structure5. A structure is an object of the following type: 

S = <S; τ> 
S is called the domain of the structure, it is just a set. 
τ is called the type of the structure, it is a sequence of relations defined 
on the domain (we take the concept of relation here in a very broad 
sense: including functions and not only relations between elements of 
the domain, but relations between parts of the domain, etc.) 

We say that two structures have the same type iff their types have 
the same quantity and quality, that is to say if the lengths of the 
sequences are the same and if the first members of the two sequences 
are similar constructions (e.g. two binary relations defined on the power 
set of the domain), the second members also, etc. Now we will 
introduce several notions that will enable us to define the notion of 
equivalence between structures. 

 
Definition of isomorphism 

The relation of isomorphism is defined between structures of the 
same type. Two structures are isomorphic iff there is a bijection 
between them that preserves all the relations of the types. One may 
think that the notion of isomorphism is the basic notion of identity or 
equivalence between structures. But this notion is too strong for two 
reasons: one may want to identify structures of different cardinalities 
(cf. section 8) and one may also want to identify structures of different 
types. 

 
Definition of expansion/reduct 

A structure S2 = <S2; τ2> is an expansion of a structure S1 = <S1; 
τ1> (or S1 is a reduct of S2) iff 

• they have the same domain: S1 = S2 
• the type of S1 is included in the type of S2: τ1 ⊆ τ2 
A typical example is: <N; +, ×, ≤ > is an expansion of <N; +, ≤ > 
 

Definition of definition by expansion 
If the new elements of the type of S2 can be defined in terms of the 

elements of the type of S1, we say that S2 is an expansion by definition 
of S1. 

 

5  The definitions that we present here are adaptations of definitions of logical struc-
turalism, this adaptation is probably an original contribution that we are making here. 
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The difficulty here is to define definition. One can admit several 
kinds of definitions, and accordingly a structure is or is not expansion 
by definition of a given structure. Let us give a typical example. <N; 0, 
s, +, ×, ≤ >, where s is the successor function, is an extension by 
definition of <N; 0, s> if we consider second-order definitions (i.e. 
definitions involving quantification over parts of the domain of the 
structure), but it is not an extension by definition if we restrict ourselves 
to first-order definitions. 

 
Definition of equivalence between structures 

Two structures are equivalent iff they have a common (up to 
isomorphism) expansion by definition. 

 
In particular if a structure is an expansion by definition of another 

one, they are both equivalent. The problem of which kind of definitions 
we will admit is therefore also fundamental here. For example, from a 
second-order viewpoint <N; 0, s, +, ×, ≤ > is equivalent to <N; 0, s> but 
not from a first-order viewpoint. 

Another important notion of mathematical structuralism is the 
notion of extension. It is not needed to define equivalence in the 
modern sense, but we will need it to define equivalence in the 
postmodern sense. 

 
Definition of extension/substructure 

A structure S2 = <S2; τ2> is an extension of a structure S1 = <S1; 
τ1> (or S1 is a substructure of S2) iff 

• the domain of S1 is included in the domain of S2: S1 ⊆ S2 
• they have the same type 
• each element of τ1 is a restriction of the corresponding element 

of τ2 to S1 
 
A typical example is: <Z; 0, s, +, ×, ≤ > is an extension of <N; +, ×, 

≤ >. 
Note that in this example we use the same symbol + to denote two 

different things (the same for × and ≤). As Bourbaki would say "C'est 
un abus de langage dont les mathematiciens sont tres friands". In fact 
such "friandise" is exactly justified and explained by the definition of 
extension of structure. Mathematicians use the same symbol because 
although these two symbols denote two different functions, they denote 
functions which are intimately connected. 
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3. Relation of consequence or operator of consequence?  
The following structure will be the structure of reference for our 

investigations about CPL-structures: 
K = <F; ¬, ∧, ∨, →, |-> 

Elements of F are called formulas. The set F is freely generated 
from a subset A of atomic formulas with the unary function ¬, called 
negation, and three binary functions: ^, called conjunction, ∨, called 
disjunction, and →, called implication. That is to say the following 
structure is an absolutely free algebra: 

F = <F; ¬, ∧, ∨, →> 
The structure K can therefore be represented in a simpler way as 

follows: 
K = <F; |-> 

The relation |- is called relation of consequence. It is a relation 
between sets of formulas and formulas, i.e. |- ⊆ P(F)XF. 

There are thousands of structures that one may want to consider as 
CPL-structures. And for each one we must check if the standard notion 
of equivalence apply in such a way that this given structure is 
equivalent to K. 

Let us start with an easy case. Instead of considering a relation of 
consequence |- to define CPL, we can consider, as Tarski did, an 
operator of consequence Cn. It is easy to see that it is the same, that we 
have here two equivalent structures. 

Consider the structure 
Kn = <F; Cn> 

where Cn is a function from F to F. 
It is not difficult to show that Kn and Cn are equivalent. We 

consider the following structure: 
KKn = <F; |-; Cn> 

This structure is an expansion by definition of K and of Cn. The 
following definition is used: 

a ∈ CnT  iff  T |- a 

4. Consequence or tautologies?  
Let us now turn to a more complex case. Consider the structure 

T = <F; T> 
where T is the subset of F, the set of classical tautologies. 

We can say that the following structure 
KT = <F; |-; T> 

is an expansion by definition of K and T using respectively the two 
following definitions: 

(1) a ∈ T  iff  ∅ |- a 
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(2) T |- b  iff there exists elements a1, ... an of T, such that a1 ∧…∧ 
an → b ∈ T 

In this sense T and K are equivalent structures. 
 
However there is a fundamental property that distinguishes T and K. 

The first is decidable (in the sense that the set T is recursive) and the 
second is not decidable (in the sense that the relation |- is not recursive). 

At this point it is important to note that what we want to establish is 
a congruence relation between structures. Our notion of equivalence 
will be a congruence relation depending on which superstructure we 
will consider, which properties will be taken into account in this 
superstructure. If we think that T and K must not be considered as 
equivalent, then we just take a superstructure featuring decidability. Or 
we may take the other option. 

Another way to look at the problem is to analyze the definition (2) 
above. If one doesn't want T and K to be equivalent, one can find a way 
to rule out this definition. On the other case one has to be able to justify 
the allowance of this definition (and therefore all similar ones) and has 
to be ready to accept all the consequences of such kind definition. 

We consider now the structure 
M = <F; |-m> 

where |-m is a relation between sets of formulas, i.e. |-m ⊆ P(F)XP(F) 
We can say that the following structure 

KM = <F; |-; |-m> 
is an expansion by definition of K and M using respectively the two 
following definitions: 

(1) T |-m U iff there exists a ∈ U such that T |- a 
(2) T |- a  iff  T |- m {a} 
Let us also consider the structure 

M0 = <F; |-m0> 
where |-m0 is a relation between finite sets of formulas. 

Structures of type M or M0 have been considered in the literature, 
sometimes under the name multi-conclusion logic (cf. [12]). The 
problem is that people don't always made a sharp distinction between M 
and M0. But the difference between these two structures is the same as 
between K and T, since one is decidable and not the other. So the 
equivalence between them is not straightforward. 

5. Or or and?  
Classical logic can be presented in a more economical way that K 

since implication and disjunction are definable with negation and 
conjunction. One could also consider classical logic as a structure with 
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only one connective, like the Sheffer's stroke. If we want to be generous 
instead of being stingy, we could on the other hand consider a richer 
structure than K, adding for example the bi-implication ↔, etc. 
Generally all these ways of presenting CPL are considered as 
equivalent. Let us call this intuitive notion of equivalence, language-
equivalence, and let us see if we can define language-equivalence 
within classical structuralism. 

Consider the structures 
Kand = <Fand; |-and> 

Kor = <For; |-or> 
where Fand and For are respectively the structures  

<Fand; ¬and, ∧and, →and> 
<For; ¬or, ∨or, →or> 

where xand are the restrictions of x to Fand 
and xor are the restrictions of x to For. 

Everybody knows that it is possible to define ∨ with ¬ and ∧ in the 
following way: 

a∨b ≡Def ¬(¬a ∧ ¬b) 
but K is not an expansion by definition of Kand simply because K is 

not an expansion of Kand: they have not the same domain. 
K looks like an extension of Kand since Fand ⊆ F and *and are 

restrictions of x to Fand but K is not strictly speaking an extension of 
Kand since these two structures have not the same type: ∨ is not part of 
the type of Kand. 

It seems that classical structuralism, based on extension, expansion 
and isomorphism, is not enough to analyze the relations between K and 
Kand, and more generally the language-equivalence relation. Let us turn 
therefore into something more sophisticated. 

6. Postmodern mathematical structuralism 
Following postmodernism (cf. the distinction between difference 

and differance), we introduce the notions of expension, extansion and 
their correlates. 

An expension is an expansion of an extension. An extansion is an 
extension of an expansion. We define then in a natural way the notions 
of expension by definition and extansion by definition. And we say that 
two structures are postmodern equivalent iff they have a common (up to 
isomorphism) extansion or expension by definition.  

K is an extansion by definition of Kand, since 
K = <F; ¬, ∧, ∨, →, |-> 

is an extension of 
<Fand; ¬and, ∧and, ∨and, →and, |-and> 

273 



which is itself an expansion by definition of 
K = <Fand; ¬and, ∧and, →and, |-and> 

That seems fine: the two structures K and Kand are therefore 
equivalent in the postmodern sense. And the postmodern notion of 
equivalence also resolves the problem of all language-equivalent 
structures. But maybe it solves also too much problems, in the sense 
that it mixes bananas with tomatoes, it puts in the same equivalence 
class, structures that are too much different. 

It is too early to claim that postmodernism structuralism will 
overthrow modernism structuralism, the notion of postmodern 
equivalence has to be investigated more systematically. 

7. Logic or algebra?  
Maybe there is a way to solve the problem of language-equivalence 

without going into postmodern structuralism, this is the algebraic way. 
Given the structure K we consider the binary relation -||- on F 

defined as follows: 
a -||- b iff {a} |- b and {b} |- a 

It is known that this relation is a congruence relation. Factorizing K 
with this relation we get the following structure: 

Ka = <Fa; ¬a, ∧a, ∨a, →a, |-a> 
We can also factorize the structure Kand by the corresponding 

congruence relation -||-and and then get the following structure: 
Ka

and = <Fa
and; ¬a

and, ∧a
and, →a

and, |-a
and> 

It is easy to see that Fa = Fa
and so Ka and Ka

and have the same 
domain, and Ka is an expansion by definition of Ka

and. 
If one consider that K is equivalent to Ka and that Kand is equivalent 

to Ka
and then, due to the above fact, K is equivalent to Kand and we have 

solve the problem of language-equivalence. 
But can we consider that a structure is equivalent to one of its 

factorization? Here we have a problem similar to the one of section 4. 
A structure and one of its factorization don't have necessary the same 
properties. So if we want our equivalence here to be a congruence 
relation, we have to consider that the properties that distinguish a 
structure and its factorization are not essential. 

This problem is related to the question of the distinction between 
algebra and logic, between Universal Algebra and Universal Logic. Can 
we consider that CPL is not less, not more than Boolean algebra, and 
that all the work that has been carried out between Boole and Tarski6 
was meaningless? 

6  In [14], Tarski proved that we get a Boolean algebra by factorizing CPL. 
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At this point it is important to emphasize that the difference 
between CPL, as represented by K, and a Boolean algebra is not only a 
question of factorization. The structure Ka is not strictly speaking a 
Boolean algebra. The difference between Ka and a Boolean algebra is 
similar to the difference between K and T. In a Boolean algebra 
generally we consider a binary relation (identity) between objects of the 
domain and not between sets of objects and objects, like |-a. If we 
consider CPL as T, then the difference between CPL and a Boolean 
algebra is just a question of factorization (in this case the relation of 
congruence has to be defined with the implication – cf. Tarski's original 
definition). 

Nowadays most people would rather consider a logic as a structure 
of the type of K, than of the type of T. If we consider that CPL is better 
represented by K, there are two important steps from CPL to Boolean 
algebra: decidability and factorization. So maybe the algebraic way is 
not a good way to solve the language-problem equivalence. 

8. Countable or uncountable?  
Depending on the fact that the domain F of K is generated by a set 

of finite, countable7 or uncountable atomic formulas, F is finite, 
countable or uncountable. 

Due to the fact that the notion of isomorphism depends on the 
notion of cardinality and that the notion of equivalence, whether it is 
modern and postmodern, depends on the notion of isomorphism, it is 
not possible to consider that two versions of K of different cardinalities 
are equivalent. This sounds reasonable for the distinction between finite 
and infinite, since a finite version of K differs from an infinite version 
in many aspects, for example the factorization of a finite version as a 
finite domain. But this seems artificial for the distinction within the 
infinite, between countable and uncountable. 

The reason why is due to one important feature of the CPL that we 
have not discussed yet: substitution or structurality to use the 
terminology of the famous paper by Łoś and Suszko [9]. It is easier to 
explain what happens if we consider tautologies rather than a 
consequence relation. So let us consider the structure T = <F; T>. 
Following Łoś and Suszko's structuralist approach, a substitution is any 
endomorphism ε of F, and the substitution theorem is expressed by 

For every a ∈ T and every ε, ε(a) ∈ T 
Given a formula a, the schema of a, sch(a), is the set that we get by 

taking all the formulas of type ε(a), for any endomorphism ε. A schema 

7  We use the word countable here by opposition with finite and uncountable. 
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of formula A is a set of formulas such that there is a formula a and 
sch(a) = A. 

The set of schemas of formulas is always countable whether the set 
of formulas is countable or uncountable and what is important in T are 
schemas of formulas due to structurality. We don't have more 
tautologies in the case where the cardinality domain of T is an 
inaccesible cardinal since tautologies are viewed as schemas of formula 
rather than as formulas. 

9. Modernism or postmodernism?  
There are many CPL-structures, and it is not easy to find a good 

concept of equivalence that gather them into a whole. The standard 
concept of equivalence seems inadequate. It can perhaps be adapted, 
but probably artificially, to solve the problem. At this stage we don't 
know if the postmodern concept of equivalence is a good one. It has to 
be tested in fact in the whole universe of logical structures and also 
outside of it, in the whole universe of mathematical structures, if we 
want to have a uniform theory. At least there is a problem that it doesn't 
solve, the question of equivalence between CPL-structures of different 
cardinalities. 
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