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THE  CLASSIFICATION  OF 
PROPOSITIONAL  CALCULI 

(Finite Boolean Latticies of Implicational Logics) 
 
 Abstract. We discuss Smirnov's problem of finding a common background for 
classifyinn of implicational logics. We formulate and solve the problem of extending, in 
an appropriate way, an implicational fragment H→ of the inuitionistic propositional 
logic to an implicational fragment TV→  of the classical propositional logic. As a result 
we obtain logical constructions having the form of Boolean lattices whose elements are 
implicational logics. In this way, whole classes of new logics can be obtained. We also 
consider the transition from implicational logics to full logics. On the base of the 
lattices constructed, we formulate the main classification principles for propositional 
logics. 
 
 
1. Introduction 
 
 The classification problem for logical calculi was posed in 1972  by 
V.A.Smirnov [36]. The classification of singular sequential calculi was also suggested 
there, which gives rise, in turn, to the classification for rules of introduction and 
elimination of logical connectives. 
 It was the first time that structural rules were used for the classification of 
logical calculi. Much later, the same idea independently arose and was widely used by 
several researchers (see Belnap [3], Došen [8], [9], Ono [27], Wansing [47]). 
 Smirnov comes to the structural rules from comparing different concepts of 
formal inference. The deduction theorem takes different forms, when formal inference 
varies in the structure. This fact allows him to classify implicational logics according 
to the form which the deduction theorem takes. 
 One more classification of implicational logics based only on structural rules 
was suggested by Smirnov in [37], where the correspondence between some 
implicative formulas and structural rules was established. Smirnov pays attention to the 
very important problem concerning the suggested classifications: in the first case, the 
deduction theorem has the same form for H→ and TV→, the implicational fragments of 
intuitionistic and classical logics, and there is then no distinction between the logics 
H→ and TV→. In the second case, we can not point out a structurul rule providing the 
transition from H→ to TV→. This transition is usually realized by adding Peirce's law 

  P. ((p → q) → p) → p. 

However, there is no structural rule corresponding to this formula. 



 There is a quite different approach to the classification of implicational logics, 
which uses the properties of basic (initial) combinators I, B, C, W, K, and S 
introduced by first M.Schonfinkel [34] and subsequently by H.Curry (see [6]). We may 
consider these combinators as simple operators of reordering brackets and canceling 
and/or duplicating terms they are applied to: 

  Ix = x.    Wxy = xyy, 

  Bxyz = x(yz),   Kxy = x, 

  Cxyz = xzy,   Sxyz = xz(yz), 

where x, y, and z are arbitrary terms. 
 Further combinators are generated from the initial ones, for example, B´xyz = 
x(zy) (= CB),  I´ xy = yx (= CI). It turns out that the following sets of combinators {B, 
C, W, K}, {B´, W, K}, and {S, K} are equivalent. For the latter (and so for the others) 
combinatorial completeness is established, which means that all possible combinators 
are generated from combinators occuring in one of these sets. As is known there is an 
isomorphic correspondence (the so-called Curry-Howard isomorphism) between 
combinators and implicative formulas [6, ch. 9E]. The main consequence of this 
isomorphism is that the complete set of initial combinators defines the intuitionistic 
implication H→. We can use the Curry-Howard isomorphism to classify implicational 
logics in terms of combinators and vice-versa [11]. 
 However, this classification also does not include the classical implicational 
logic TV→, because there is no combinator corresponding to Peirce's law or to any 
non-intuitionistic implicative formula. This explains why one of the main goals of 
Gabbay and de Queiroz’s work [11] was to extend the Curry-Howard isomorphism to 
TV→, i.e., to construct a «combinator» P corresponding to Peirce's law, and it was 
done in a sophisticated way. 
 So, the following initial problem, which we call Smirnov’s problem, lies in 
front us: to find a common background for the classification of implicational logics 
covering TV→. In addition, we will try we try to extend this classification to other 
types of logics, first of all to full logics, i.e., to logics with all thebasic logical 
connectives. 
 
 
2. The lattice of implicational logics L(H→) 
 
 The problem envisaged in the introduction will be resolved by the presentation 
of a logical construction which involves all the logics in question. Moreover, applying 
the simplest operations to the construction presented generates new logics and even 
infinite classes of logics. As primitive objects for our construction we take the 
following implicative formulas: 
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I.    p → p 

 B.   (q → r) → ((p → q) → (p → r)) 

 C.   (p → (q → r)) → (q → (p → r)) 

 W.  (p → (p → q)) → (p → q) 

K1.  (p → q) → (r → (p → q)). 

The operations are the usual inference rules: 

 R1. Modus ponens: A → B and A imply B. 
  R2. Substitution  for propositional variables. 

For example, the formula K1 is a result of simultaneous substitution in K: 

  K. (p → (q → p)), 

where p → q is substituted for p and r for q, i.e. p/p → q and q/r. 
 We denote by |- A the provability of a formula A and write down the proofs in 
a way  suggested by J.Łukasiewicz [23]. Every thesis proved will be numbered and 
preceded by a proof line, which consists of two parts separated by an asterisk. For 
instance, let us consider the following proof. 

Proposition 1. W, K |- I. 

 1. W. 
 2. K. 
       1 q/p ∗ 2 q/p - 3, 
 3. p → p (= I). 

Here, the first part of the proof line indicates that p is substituted for q in thesis 1, the 
second part indicates the substitution in thesis 2. Thus, applying modus ponens to the 
results of substitution we prove thesis 3. 
 Note that the set of implicative formulas chosen as primitive objects should be 
independent − the fundamental requirement imposed on sets of primitive objects. 

Theorem 1. The set of formulas I, B, C, W, K1 provides an independent axiomatization 
of H→.  

 The proof consists of two parts: 
                         (i)  the independence proof for formulas I, B, C, W, K1; 
                         (ii) the proof that I, B, C, W, K1 axiomatize H→. 

(i) We use the matrix method. All the matrices involved are normal in the 
sense of Łukasiewicz-Tarski [23], i.e., they verify the modus ponens. 
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Matrix 1 [38] 

  →     0   1   2 
 
  0       2   2   2 
  1       0   0   2          verifies                  falsifies 
*2       0   0   2          B,C,W,K1             I (p=1). 
 

 Matrix 2 [1, p.85] 

  →     0   1   2 
 
  0       2   2   2 
  1       2   2   2          verifies                  falsifies 
*2       0   2   2          I,C,W,K1              B (p=2, q=1, r=0). 
 

 Matrix 3 [38] 

  →     0   1   2 
 
  0       2   2   2 
  1       0   2   2          verifies                  falsifies 
*2       0   0   2          I,B,W,K1              C (p=2, q=1, r=1). 
  
 Matrix 4  [20] 

  →     0   1   2 
 
  0       2   2   2 
  1       1   2   2          verifies                  falsifies 
*2       0   1   2          I,B,C,K1               W (p=1, q=0). 

 

 Matrix 5 [38] 

  →     0   1   2 
 
  0      2   2   2 
*1      0   1   2          verifies                   falsifies 
*2      0   0   2          I,B,C,W                K1 (p=0, q=0, r=1) 

(ii). It is enough to show that I, B, C, W, K1 |- K.  

 

 4



Proposition 2. I, C, K1 |- K  [36 , p.61]. 

 1. I. 
 2. C. 
 3. K1. 

    3 q/p, r/q ∗ 1 - 4, 
 4. q → (p → p). 

    2 p/q, q/p, r/p ∗ 4 - 5, 
 5. p → (q → p) (=K). 

Theorem 1 is thus proved.. 
Now in virtue of the independence of the set {I, B, C, W, K1}, we can build 

the following logical construction. It is wellknown that the family of all subsets of a 
set forms a Boolean lattice w.r.t. inclusion. Considering the family of subsets of the 
above set of formulas we obtain our logical construction denoted by L(H) a Boolean 
lattice with 32 (=25) elements and H→  as its unit. For simplicity of drawing we take 
the logic IB to be the zero of the lattice. As a result we have the following eight-
element lattice: 

 
H→  

  
 
 
 

 

     IBCW IBCK1 IBWK1

  
 

 

   
   

     BCI IBW IBK1

                       
 

 

 IB  

 Fig. 1  
 
The logic IBCW is the Church weak positive implication R→ [5]. In view of 

Propositions 1 and 2 and the fact that K1 is a substitutional instance of K, we have 
IBCK1 ≡ BCK. A.Prior [29, p.316] wrote that  BCI and BCK were introduced by 
C.A.Meredith in 1956. However, it should be noted that BCK as a logical system was 
isolated as early as in 1934 by A.Tarski [40]. We note also that H.Curry [6] proved the 
deduction theorem for IB. 
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3. The lattice of implicational logics L(TV→) 
 
 We deal here with a problem  similar to that envisaged in the end of Section 1: 
Does there exist a formula X such that the set of formulas I, B, C, W, K1, X provides 
an independent axiomatization of TV→ [14]? 
 Recall that, in virtue of the Tarski-Bernays theorem (see [33]), the classical 
implicational logic TV→ is axiomatized by formulas B’, K, P with modus ponens and 
substitution rules, where 

  B’.  (p → q) → ((q → r) → (p → r)). 

As was noted above, TV→ can be obtained by addition of P to H→. But Peirce's law is 
not a satisfactory candidate for X, because the formulas I, B, C + P already axiomatize 
TV→ , i.e., I B, C, P |- W, K, which means that the set of formulas I, B, C, W, K, P is 
not independent. Since B, C ≡ B’, C it sufficies to prove 

Proposition 3. I, B, C, P |-K (see [46], [29, p.318], [39]). 

Thus, the formula P must be weakened. A suitable weakening of P was found 
in November 1992 by the author: 

X1. ((p → q) → ((r → r) → (p → q))) → (W1 → P1), 

where ((p → q) → ((r → r) → (p → q))) is a substitutional instance of K1: r/r → r; W1  

of W: p/p → q, q/r; and P1 of P: p/p → q, q/r.  

Theorem 2. The set of formulas I, B, C, W, K1 X1 provides an independent 
axiomatization of TV→.  

 (i). We prove the independence of  I, B, C, W, K1   using the matrices from 
Theorem 1. The independence of X1 can be proved by 

 Matrix 6 (three-valued implication of Heyting [13]) 

  →     0   1   2 
 
  0       2   2   2 
  1       0   2   2          verifies                   falsifies 
*2       0   1   2          I,B,C,W,K1           X1 (p=2, q=1, r=0). 

(ii). I, B, C, W, K1, X1  is TV→: 

Proposition 4. I, B, C, W, K1, X1 |- P. 

       X1 ∗ K1 r/r → r - W p/p → q, q/r - P1, 

P1. (((p → q) → r) → (p → q)) → (p → q). 
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Further, see Addition 2 in [16] where it was proved that I, B, C, P1 |- P (the proof 
contains 23 numbered formulas). 

We have thus constructed a suitable extension of H→ of TV→. But the formula 
X1 can be simplified. Note that W1 → P1 is a substitutional instance of a formula D: 

 D. ((p → q) → q) → ((q → p) → p). 

Consider a formula Х2: 

  (p → ((q → q) → p)) → D, 

where(p → ((q → q) → p))  is a substitutional instance of  K: q/q → q. 

Theorem 3. The set of formulas I, B, C, W, K1, X2  provides an independent 
axiomatization of TV→ (compare [15]). 

 (i). The independence of  I, C, W, K1, X1 is proved by the same matrices as in 
Theorem 2. The independence of a formula B is proved by 

Matrix 7 [18], [45]: 

  →     0   1   2   3 
 
  0       3   3   3   3 
  1       3   3   2   3 
  2       3   1   3   3  verifies                   falsifies 
*3       0   1   2   3 I,C,W,K1,Х2          B (p=2, q=0, r=1) 

 (ii). I, В, C, W, K1, Х2 is TV→: 

Proposition 5. I, C, W, K1, Х2 |- Р. 
 1. I. 
 2. C. 
 3. W. 
 4. K1. 
 5. Х2. 
 6. I, C, K1 |- K  (Proposition 2). 
       5 q/p → q ∗ 6 q/(p → q) → (p → q) - 3 - 7, 
 7. ((p → q) → p) → p (= P). 

The proof of Theorem 3 is complete. 

Now we consider the lattice L(TV→) consisting of logics generated by 
formulas in {I, В, C, W, K1, Х2}. For simplicity of drawing we take BCI as the zero of 
the lattice: 
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TV→  

  
 
 
 

 

H→ R→+X2 BCKX2

  
 

 

   
   

R→ BCK BCIX2

                       
 

 

 BCI  

Fig. 2 

The logic BCKX2 is of special interest. 

 

Proposition 6. BCKX2 = BCKD. 

 The proof is evident. 
 BCKD is a fragment of Łukasiewicz’s infinite-valued logic Łω [23] and was 
studied for the first time by A.Rose and J.Rosser [33] (see also [10]). The following 
equalities hold 

  BCKD = BCID = B’KD = BKD. 

The logic B’KD has the following remarkable property. If we add to B’KD the 
linearity law L: 

  L. ((p → q) → (q → p)) → (q → p), 

we obtain an implicational fragment Łω→ of Łω [31], [25]. 

 Now we pay attention to the following important fact: though  

IBCWK1X1 = IBCWK1X2 = TV→

the logical constructions corresponding to these axiomatizations are different. For 
example, we have 

Proposition 7. BCKX1 ≠ BCKX2.
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Matrix 8 

  →     0   1   2   3 
 
  0       3   3   3   3 
  1       2   3   3   3 
  2       2   2   3   3 verifies   falsifies 
*3       0   1   2   3 I,B,C,K1,X1  X2 (p=1, q=0). 

 The formula X1 is provable in BCKX2. Thus, we have different classical 
versions of the logic BCK. 
 
 
4. The maximal lattice L(TV→): RM→ and Łω→ logics 
 
 The different TV→-constructions give rize to the question concerning the class 
of possible formulas Xi [16, p.242]. J.Slaney and M.Bunder [35, p.64] posed also the 
following two problems: 
 “(1) Is there an infinite number of distinct systems BCIXi, BCKXi and 

BCIWXi? 
  (2) Is there a weakest and strongest system BCIXi, BCKXi and  BCIWXi?” 
In [35], another formula was taken to be an X: 

  X3. ((((p → q) → q) → p) → r) → (((((q → p) → p) → q) → r) → r).1

 Slaney and Bunder showed that  

  BCKX2 ≠ BCKX3

and that X2 is provable in BCKX3. 
 However, the independence of I from B, C, W, K1, X3 was not proved in [35]. 
Moreover, there is not even a four-element matrix for checking this fact. This is our 
reason replacing X3 by the following formula X4: 

X4. (p → p) → X3. 

Theorem 4. The set of formulas I, B, C, W, K1, X4  provides an independent 
axiomatization of TV→. 

(i). The independence proof follows the line of Theorem 2. 
 (ii). I, B, C, W, K1, X4  is TV→: 

 

 

                                                           
 1This formula is due to [26] in which an independent axiomatization of RM→ was 
proposed with formulas B', W, I', X3, where I' is p → ((p → q) → q). 
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Proposition 8. I, B, C, W, K1, X4 |- P. 

1.  (p → p) (= I). 

2.  (q→ r) → (( p → q) → (p → r)) (= B). 

3.  (p → (q → r)) → (q → (p → r)) (= C). 

4.  (p → (p → q)) → (p → q) (= W). 

 5.  (p → q) → (r → (p → q)) (= K1). 

 6.  (p → p) → ((((p → q) → q) → p) → r) → (((((q → p) → p) → q) → r) → 
r)  (= X4). 

     6 ∗ 1 -7, 

 7.  ((((p → q) → q) → p) → r) → (((((q → p) → p) → q) → r) → r) (= X3). 

     5 q/p, r/q → p ∗ 1 - 8, 

 8.  (q → p) → (p → p). 

     3 p/q → p, q/p, r/p ∗ 8 - 9, 

 9.  p → ((q → p) → p). 

     2 q/p, r/(q → p) → p, p/(p → q) → q ∗ 9 - 10, 

 10. (((p → q) → q) → p) → D. 

     3 p/q → r, q/p → q, r/p → r ∗ 2 - 11, 

 11. (p → q) → ((q → r) → (p → r)) (= В´). 

     11 q/(q → p) → p, r/q ∗ 9 - 12, 

 12. (((q → p) → p) → q) → (p → q). 

     3 p/q → p, r/p ∗ 1 p/q → p - 13, 

 13. q → ((q → p) → p). 

     2 r/(q → p) → p, p/(p → q) → q) ∗ 13 - 14, 

 14. (((p → q) → q) → q) → (((p → q) → q) → ((q → p) → p)). 

     2 q/((p → q) → q) → q, r/D, p/p → q ∗ 14 -15, 

 15. ((p → q) → (((p → q) → q) → q)) → ((p → q) → D). 

     15 ∗ 13 q/p → q, p/q - 16, 

 16. (p → q) → D. 

     2 q/p → q, r/D, p/((q → p) → p) → q ∗ 16 - 12 - 17, 

 17. (((q → p) → p) → q) → D. 
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     7 r/D ∗ 10 - 17 - 18, 

 18. ((p → q) → q) → ((q → p) → p) (= D). 

     18 q/p → q ∗ 4 - 19, 

 19. ((p → q) → p) → p (= P)  
2

 . 

Theorem 4 is proved. 

 The logics IBCWX4 and IBCK1X4 are of special interest. It is not hard to 
prove 

Proposition 9. IBCWX4 is RM→. 

 Further, we state the following fact. 

Proposition 10. IBCK1X4 is Ł ω→ (see [17, pp. 158-159] for details). 

 Obviously, IBCK1X4 = IBCK1X3. It is routine to check that X3 is valid in the 
matrix for Łω. Hence by the of completeness theorem of the propositional calculus Łω 
[4], X3 is provable in Łω. Since the implication → is separable in Łω (see also 
Woźniakowska [48]3), X3 is also proved in Łω→, i.e. B’, K, D |- X3. On the other hand, 
we have to show that I, B, C, K1, X3 |- K, D, L. 
  (1) For K, the proof follows from Proposition 2. 
  (2) For D, the proof follows from Proposition 8 (see formula 18). 
  (3) I, B, C, K1, X3 |- L.  

1.   I. 
2.   B. 
3.   C. 

 4.   K1. 
 5.   X3. 
 6.   D (Proposition 8, formula 18). 

 7.   (((q → p) → p) → q) → (p → q) (Proposition 8, formula 12). 

      4 p/((p → q) → q) → p, q/q → p, r/(p → q) → (q → p) ∗ 7 q/p, p/q - 8, 

 8.   ((p → q) → (q → p)) → ((((p → q) → q) → p) → (q → p)). 

      3 p/(p → q) → (q → p), q/(((p → q) → q) → p), r/q → p ∗ 8 - 9, 

 9.   (((p → q) → q) → p) → L. 

      2 q/((q → p) → (p → q)) → (p → q), r/L, p/((q → p) → p) → q ∗ 6 p/q → 
p, q/p → q -  
                                                           
 2This has been proved in collaboration with V.M.Popov. Proposition 8 (in the form I, 
B, C, W, K, X3 |− P) was first proved  with the help of a computer program [35]. 

3 In [48], Łω→ is axiomatized by K, D and 
 ((p → q) → (p → r)) → ((q → p) → (q → r)). 
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      9 p/q, q/p - 10, 

 10. (((q → p) → p) → q) → L. 

      5 r/L ∗ 9 -10 - 11, 

 11. ((p → q) → (q → p)) → (q → p) (=L). 

We have thus proved Proposition 10, and this proof was semantical. In fact, we have 
proved that the substitution of D for X3 in commutative BCK, i.e., in BCKD, provides 
an axiomatization for Łω→. Moreover, we have a purely syntactical proof of the fact 
that 

  B’KDL ≡ BCKX3 ≡ Łω→

(see [19]). 
 Next , we consider the lattice L(TV→) with the axiom X4: 

 
TV→  

  
 
 

 

H→ RM→ Ł ω→

  
 

 

   
   

R→ BCK BCIX4

                       
 

 

 BCI  

          Fig. 3.  

 Note that TV→ is the unique proper extension of RM→ (see [2]). This fact 
immediately implies an answer to question (2) of Slaney and Bunder concerning 
BCIWXi, namely, that RM→ is a stronger system. In view of this fact, such a 
construction is called maximal for implicational logics [17a]. In essence we have eight 
fundamental implicational logical systems. 
 We also have a partial answer to question (1) of Slaney and Bunder. Let α and 
β be arbitrary wffs. We call α variable-like if any propositional variable occurs in α at 
most once. If α = (p1/β1, p2/β2, ..., pk/βk), each βi is variable-like, and for i ≠ j, βi and βj 
have no propositional variables in common, then β is called a restricted substitution 
instance (r.s.i.) of α. Thus, K1 is an r.s.i. of K. B.Pahi established [26, Corollary 1] that 
if P is an extension of R→ and α* is an r.s.i. of an implicational wff α, then P + α and 
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P + α* define equivalent systems. In our case, it means that any r.s.i. of formulas X1 - 
X4 can be chosen as X. Thus there are infinitely many different systems BCIXi. For 
example, Let X5 be r.s.i. of X2: p/p→q, q/r. Using theorem 1, we can show that I, B, C, 
W, K, X5 is TV→. So R→ + X2 = R→ + X5, but BCIX2 ≠ BCIX5. 
 Our logical construction presents natural ways for extending logics. Thus, Łω→ 
can be extended to TV→ by the addition of axiom W. A.Rose showed in [32] that the 
implicational fragments Łn→ of Łukasiewicz's n-valued logics Łn [23] are axiomatized 
relative to Łω→  by an axiom 
  A5. (pk-1 → q) → p) → p, 
where k is a natural number greater than 1 
 For k=2, A5 coincides with the Peirce's law P; for k=3, A5 is 
  P3. ((p → (p → q)) → p) → p, 
and so on. 
 Consider the formula 
  A5´. (p →k q) → (p →k-1 q)4. 
 Axiom A5´ coincides with W  for k=2, with 
  W3.   (p → ( p→ (  p→ q))) → (p → (p → q)) 
for k=3, and so on. 
Proposition 11. Łω→+ A5´ is an axiomatization of Łn→, for every n (2 ≤ n < ω). 
 We need to show that 
  I. Ł ω→ + A5 |- A5´. 
  II. Ł ω→ + A5´ |- A5. 
 Both facts follows easily from axiom D. 
 
 
5. The lattice of implicational logics L(TV→): E→, S4→, S5→. 
 
 We formulate the following problem. Is it possible to construct a lattice of 
implicational logics with TV→ as its unit but which contain such elements as 
Ackermann's rigorous implication E→, and Lewis's implications S4→ and S5→. In 1956, 
C.Meredith proved (see [20]) that S5→ is axiomatized by I, B´, K1, P1, where P1 is 

  (((p → q) → r) → (p → q)) → (p → q)5, 

an r.s.i. of the Peirce's law P. 

                                                           
4 See axiom A4 in [43] which is introduced for axiomatization Ł n
5The axiomatization of implicational fragments of Lewis's modal systems is discussed 

in [12].  
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 Implicational fragments of Lewis's modal systems (strict implication) are 
known not to admit the permutation law C. Instead they contain the formula C1, which 
is equal to the following r.s.i. of C: 
  (p → ((q → r) → s)) → ((q → r) → (p → s)). 
 Let us consider a formula A ((p → p) → q) → q. Note that AB'W is 
Ackerman's implication E→ [1, p. 77]. Wajsberg showed [46, p. 179] that A,B' |- C1. 
Note that A |- I [1, p. 77]. 

It follows from Mendez [24] that AB'WK1 provides an independent 
axiomatization of S4→, an implicational fragment of S4. As usual S5→ is considered as 
S4→ + P1. Let us show that S4→ + X2 is S5→. For begininig we use Ulrich's 
characteristic matrix for S5→ [44]. That matrix has as its values the set N of natural 
numbers: 1, 2, 3 …… together with 0. The sole designated value is 1. The implication 
x → y is defined for x and y in N, and x → y = 1 if x is a multiple of y and x → y = 0 
otherwise. The formula X2 is valid in this matrix. It remains to prove 

Proposition 12. W, K1, X2 |- P1. 
 1. W. 
 2. К1. 
 3. Х2. 

    3 p/p → q, q/(p → q) → r ∗ 2 r/((p → q) → r) → ((p → q) → r) - 

    1 p/p → q, q/( p→ q) → r - 4, 
 4. (((p → q) → r) → (p → q)) → (p → q) (= P1). 
 In [1a, p.46] Anderson and Belnap introduced a formula C': 

p → ((p → p) → p) 
and proved that E→ + C' = S4→, S4→ + C' = S5→, and S5→, + C' = TV→. 
Theorem 5. The set of formulas A, B', W, K1, X2, C' provides an independent 
axiomatization of TV→. 
 (i). The independence proof for A is matrix 1; for B' is matrix 7; for W is 
matrix 4; for K1 matrix 5; for X2 is matrix 6; for C' is matrix 3. 
 (ii). A, B', W, K1, X2, C' is TV→ (see above).  

 Note that X3 is not valid in Ulrich's matrix (p=2, q=3, r=0). 
 Now we can build the lattice L(TV→) with rigorous and strict implications 
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TV→  

  
 
 

 

H→ RX2→ S5→

  
 

 

   
   

R→ S4→ EX2→

                       
 

 

 E→  

          Fig. 4  
 
 
6. Full propositional logics and basic principles of classification 
 
 As follows from Wajsberg's work [46, § 5], the addition of 0 → p (where 0 is a 
constant interpreted as  falsehood) to an arbitrary axiomatization of TV→ gives the full 
classical propositional logic TV. Let us denote the formula 0 → p by N. 

Theorem 5. The set of formulas I, B, C, W, K1, X4 N provides an an independent 
axiomatization of TV. 

 (i). The independence proof for I, B, W, K1, X4  follows the lines of Theorem 
4. The independence of N is proved by  

 
Matrix 10 

  →     0   1   2 
 
   0      2   1   2 
   1      0   2   2  verifies                     falsifies 
 *2      0   1   2   I,B,C,W,K1,X4,       N (p=1). 

 (ii). I, B, C, W, K1, X4, N is TV [46] (see also [42]). 
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Theorem 6 is proved. 

Recall that B´, K, D, N axiomatize Łω [41], hence BCKX2N, BCKX3N, and 
BCKX4N are also equal to Ł ω. 
 Now we can draw the lattice L(TV) with the logic BCK as zero: 

 
 
 

TV  

  
 
 

 

TV→ HN→ Ł ω

  
 

 

   
   

H→ Łω→ BCKN 

                       
 

 

 BCK  

              Fig. 5  
  

 
Only some logics in the TV-construction have a lattice structure, namely, TV 

and Ł ω, but we can add a certain lattice structures to implicational logics. For example, 
H→ with a lattice structure is a distributive lattice [30], and together with negation ¬p 
(= p → 0) obtain the full intuitionistic propositional logic H. 

As a result our logical construction demonstrates in an evident manner the 
relationships between different logics and the place these logics occupy in relation to 
the classical logic TV. 

In conclusion we list the basic principles of generation of propositional logics 
and whole classes of them: 

1. The discovery of a new Xi defines various sublogics generated by elements 
of the set {I, B, C, W, K1, Xi, N}. 

2. Restricted substitution generates whole classes of sublogics in the TV→-
conctructions. 

3. Different substitutions generate new constructions, for example, the Łn-
constructions. 

4. The combination of substitution and modus ponens gives new constructions, 
for example, the S5→-construction. 
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 Thus, in some sense, we suppose that the classification of propositional calculi 
can be based on different constructions generating new logics. 
 
Note. Recently a study in substructural logics becomes a new trend in logic [9a]. 
Usually, Gentzen's sequent calculus LJ is taken and different subsystems of LJ are 
constructed via varying and/or restricting of structural rules; or several restricted 
versions of the structural rules in the implicational fragment of Gentzen's sequent 
calculus LJ are introduced [19a]. But our approach is different in form (Hilbert calculi) 
as well as in content: sublogics of classical implication are considered. As result, the 
important implicational logics like RM→ and Ł ω→ appear as well as a quite new 
sublogics such as RX2, BCIX2, BCIX3, EX2 and other. 
 
 
ADDITION 1. In 2001 using William McCune’s automated reasoning program, 
OTTER,6  Vladimir Komendantsky proved that B, C, W, K1, X3 |- I. 
 
ADDITION 2. In 2002 Zachary Ernst suggested nine formulas X such that {I, B, C, W, 
K1, X} is an independent basis for the implicational fragment of classical logic.7 Using 
OTTER program he also proved that BCIX2 is a subsystem of BCIX3 (see the 
problems in [35]). 
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