
Natural deduction in a paracomplete
setting
A.E. Bolotov, V.O. Shangin1

abstract. In this paper we present the automated proof search
technique in natural deduction paracomplete logic. Here, for some
statements we do not have evidence to conclude if they are true or
false, as it happens in the classical framework. As a consequence,
for example, formulae of the type p ∨ ¬p, are not valid. In this
paper we formulate the natural deduction system for paracomplete
logic PComp, explain its main concepts, define proof searching
techniques and the searching algorithm providing examples proofs.

Keywords: paraconsistent logic, natural deduction, proof search

1 Introduction
The Natural Deduction systems for a long time have been mostly
subject of teaching curriculum while the computer science commu-
nity paid much more attention to other deductive methods such
as for example resolution or tableaux. The recent interest in ND
systems [3, 26, 22] is, to large extend, due to its potential to give an
explicit construction of the proof based on some goal-directed proof
search. This enables applications of ND in various areas [27, 13].

In this paper we concentrate on paracomplete logic PComp, [4],
[1], and [23]. In our presentation of an ND formulation of PComp
we directly follow the notation of the latter.

We, in general, follow Quine’s representation of subordinate de-
duction [24] which, in turn, originates from Jaskowski [16] and Fitch
[14].

1The second author is supported by the Russian Foundation for Humanities,
project 13-03-00088a. The authors thank two anonymous referees for useful
suggestions.

Natural deduction in a paracomplete setting 225

In our previous work we extended the original formulation for
classical propositional logic to first-order logic [10, 11] and then to
the non-classical framework of propositional intuitionistic logic [18].
Then, in [8] it was further extended to capture propositional linear-
time temporal logic PLTL and in [12] the computation tree logic
CTL. Subsequent works defined the proof technique for natural de-
duction in linear-time case [9] and tackled expressive formalisms of
quantified temporal logic [5] and in [7] we have presented a natural
deduction system for the paraconsistent logic PCont and relevant
proof searching algorithm.

The main contribution of this paper is the definition of the nat-
ural deduction proof search technique for the paracomplete logic
PComp.

The rest of the paper is organized as follows. In § 2 we describe
PComp reviewing its axiomatics and semantics. In § 3 we formu-
late the natural deduction calculus and give an example of the con-
struction of the proof. Subsequently, in § 4, we introduce the main
proof-searching procedures, formulate the searching algorithm and
show its correctness. Finally, in § 5, we provide concluding remarks
and identify future work.

2 Paracomplete Logic PComp

Fixing a set Prop of propositions, we export the following axiomat-
ics of PComp from [1]. The axiomatics is a subset of classical
propositional logic with the characteristic PComp Axiom 18.

PComp Axiomatics

1. A ⊃ (A ∨B)
2. A ⊃ (B ∨A)
3. (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))
4. (A ∧B) ⊃ A
5. (A ∧B) ⊃ B
6. (C ⊃ A) ⊃ ((C ⊃ B) ⊃ (C ⊃ (A ∧B)))
7. A ⊃ (B ⊃ A)
8. (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
9. ((A ⊃ B) ⊃ A) ⊃ A
10. ¬(A ∨B) ⊃ (¬A ∧ ¬B)

226 A.E. Bolotov, V.O. Shangin

11. (¬A ∧ ¬B) ⊃ ¬(A ∨B)
12. ¬(A ∧B) ⊃ (¬A ∨ ¬B)
13. (¬A ∨ ¬B) ⊃ (¬A ∧ ¬B)
14. ¬(A ⊃ B) ⊃ (A ∧ ¬B)
15. (A ∧ ¬B) ⊃ ¬(A ⊃ B)
16. ¬¬A ⊃ A
17. A ⊃ ¬¬A
18. ¬A ⊃ (A ⊃ B)

The only rule of inference of PComp is modus ponens: From A
and A ⊃ B infer B.

Semantics
The semantics for the above axiom system is a matrix semantics
which reflects the nature of this system — truth gaps. There are
three values 1, f , 0 with the designated value 1 such that 0 < f < 1
and A ∨ B = max(A,B) and A ∧ B = min(A,B). The matrix
semantics for PComp is given below:

∨ 1 f 0

1 1 1 1
f 1 f f
0 1 f 0

∧ 1 f 0

1 1 f 0
f f f 0
0 0 0 0

⊃ 1 f 0

1 1 f 0
f 1 1 1
0 1 1 1

p ¬ p

1 0
f f
0 1

In this context, for example, the law of excluded middle, p ∨ ¬p
is not a valid formula. Indeed, as it is easy to check, that when p is
assigned 1 or 0, formula p ∨ ¬p behaves as in the classical setting,
getting the designated value 1. However, when p is assigned f , the
same value, f , is assigned to its negation, ¬p, and thus p ∨ ¬p is
assigned the value f .

3 Natural deduction system NPComp

In this section we present the natural deduction system for logic
PComp slightly changing its formulation given in [25]. Due to the

Natural deduction in a paracomplete setting 227

nature of the set up of this system, we need to take care of the
behaviour of logical operations. In particular, to reflect the truth
values gapping, we need to guarantee that some known formulae
that are dependent on this semantical property, do not hold as
theorems. For example, formulae of the type A ∨ ¬A, are not, in
general, valid, for example, p ∨¬p is not a theorem. Further, some
known classical derivabilities fail. Thus, for example, from A ⊃ B
we should not be able, in general, to derive ¬A ∨ B. Similarly,
the following variant of the contraposition should also fail: from
¬A ⊃ B derive ¬B ⊃ A.

In the subsequent presentation we will utilise the following nota-
tion. Firstly, by a literal we understand a proposition or its nega-
tion. Let Lit abbreviate a set of literals. Next, when writing Γ ⊢ B
we refer to the task of establishing a natural deduction derivation
(defined below) of a formula B from some set of assumptions Γ. If
Γ, in Γ ⊢ B, is empty then the task is to prove that B is a theorem,
and in this case we will simply write ⊢ B. Finally, the abbreviation
Γ |= B stands for establishing that B is a logical consequence of
a set of assumptions Γ. If Γ, in Γ |= B, is empty then the task is
to show that B is a valid formula and in this case we will simply
write |= B. Throughout the paper, symbols ‘⊢’ and ‘|=’ stand for
PComp-derivability and PComp-validity, respectfully.

Natural deduction calculi can be used to solve different deductive
tasks. For example, we might be given any of the following tasks:

1 to find an ND derivation Γ ⊢ B,

2 to find an ND proof ⊢ B or

3 to check the consistency of some given set of formulae.

In the first and third cases, the ND derivation would start with
some given set of assumptions Γ. In the second case, i.e. when
we need to establish if B is a theorem, we commence our reason-
ing by introducing some assumptions. As in other ND calculi, in

228 A.E. Bolotov, V.O. Shangin

constructing an ND derivation, we are allowed to introduce arbi-
trary formulae as new assumptions2. Consequently, any formula in
a derivation is either an assumption or a formula which is obtained
as a result of the application of one of the inference rules.

Now, as it is indicative for the natural deduction construction,
we define two classes of rules of inference: elimination and introduc-
tion rules. Applying elimination rules we simplify formulae while
applying introduction rules we aim at ‘constructing’ formulae, in-
troducing new logical constants. In Figures 1-3 we define these sets
of elimination and introduction rules, where prefixes ‘el’ and ‘in’
stand for elimination and an introduction rule, respectively.

Elimination Rules :

∧ el1
A ∧B
A

∧ el2
A ∧B
B

¬ ∧ el
¬(A ∧B)

¬A ∨ ¬B ¬ el
¬¬A
A

¬ ∨ el1
¬(A ∨B)

¬A ¬ ∨ el2
¬(A ∨B)

¬B

⊃ el
A ⊃ B, A

B
¬ ⊃ el1

¬(A ⊃ B)

A

¬ ⊃ el2
¬(A ⊃ B)

¬B ∨el A ∨B, [A]C, [B]C,

C

Figure 1. NPComp Elimination rules

2Note that for many researchers, this opportunity to introduce arbitrary
formulae as assumptions has been a point of great scepticism regarding the
very possibility of the automation of the proof search.

Natural deduction in a paracomplete setting 229

Introduction Rules :

∧ in
A, B

A ∧B ¬ ∧ in
¬A ∨ ¬B
¬(A ∧B)

∨ in1
A

A ∨B ∨ in2
B

A ∨B

¬ ∨ in
¬A,¬B
¬(A ∨B)

⊃ in
[C] B

C ⊃ B

¬ ⊃ in
A,¬B

¬(A ⊃ B)
¬ in

B

¬¬B

⊃p
[A ⊃ B] A

A

Figure 2. NPComp Introduction rules

Characteristic PComp Rule

PComp¬ in
A, ¬A
B

Figure 3. NPComp Characteristic rule

Definition 1 (Inference). An inference in the system NPComp
is a finite non-empty sequence of formulae with the following con-
ditions:

• each formula is an assumption or is derived from the previous
ones via an NPComp-rule;

• by applying ⊃in each formula starting from the last alive as-
sumption up to the one which is the result of the application
of this rule, is discarded from the inference;

• by applying ∨el each formula starting from assumption A up
to formula C, inclusively, as well as each formula starting from
assumption B up to formula C, inclusively, is discarded from
the inference;

230 A.E. Bolotov, V.O. Shangin

• by applying ⊃p each formula starting from assumption A ⊃ B
up to formula A, inclusively, is discarded from the infer-
ence. This, as before, is abbreviated by enclosing relevant
discharged and discarded formulae into square brackets.

Definition 2 (Proof). A proof in the system NPComp is an
inference from the empty set of assumptions.

Two rules deserve attention. First, it is PComp¬ in rule which is
specific for this logic and allows to derive arbitrary formulae from
a contradiction. However, when applying this rule, we do not dis-
charge any assumptions if they were part of the contradiction.

The other rule, ⊃p rule, is an analogue to axiom 10 which repre-
sents Pierce law.

As an example of the ND proof let us consider the proof for axiom
10.

list proof annotation

1. (p ⊃ q) ⊃ p assumption
2. p ⊃ q assumption
3. p 1,2,⊃ el
4. p 3, ⊃p, [2-3]
5. ((p ⊃ q) ⊃ p) ⊃ p ⊃ in, 4, [1-4]

A slightly different formulation of NPComp has been shown to be
sound and complete [25] where instead of PComp¬in as in our cur-
rent presentation, tollendo ponens rule was used called PComp∨el:

A ∨B, ¬A
B

However, it is easy to show that PComp¬in used in the formu-
lation above and PComp∨el are derivable in both systems, respec-
tively. Let us show that PComp∨el is derivable via PComp¬in.

Natural deduction in a paracomplete setting 231

lproof annotation

1. A ∨B given
2. ¬A given
3. A assumption
4. B 2, 3, PComp¬in
5. B assumption
6. B 1, 4, 5, [3 − 4], [5] ∨ el,

PComp¬in is derivable via PComp∨el
lproof annotation

1. A given
2. ¬A given
3. A ∨B ∨ in, 1
4. B PComp∨in, 2, 3

Thus, since ND formulations of PComp in [25] and in the current
paper are deductively equivalent the established correctness in [25]
covers our current presentation:

Theorem 1. Γ ⊢NPComp A ⇐⇒ Γ |= A [25].

4 Proof searching techniques for NPComp

The proof searching procedure presented in this section is based
on our generic approach developed for various ND constructions —
in classical and non-classical settings, see for example [9, 7], where
the main components of this generic method are defined in full.
The main features of this generic procedures can be summarised as
follows:

• The proof search strategy is goal-directed, it runs over two
sequences: list proof which lists formulae in the proof and
list goals which lists goals to be reached.

• Each step of the algorithmic proof is associated with a specific
goal, called current goal.

• In forming a derivation, we check the reachability of the
current goal.

232 A.E. Bolotov, V.O. Shangin

– Reaching the current goal fires an appropriate introduc-
tion rule. Note that this makes the application of intro-
duction rules strictly determined.

– Otherwise, we continue searching for updating both se-
quences, list proof and list goals. In particular, a special
place in our searching technique is devoted to the rules
that explore compound formulae in the proof in search-
ing for new goals.

– We define special marking techniques to avoid infinite
loops in list proof and list goals during the proof search:
for example, to prevent the same application of an elim-
ination rule or updating list goals with the same goal.

For the sake of integrity of this presentation and for the readabil-
ity of the text, we introduce the proof technique for PComp below
in full, defining all main concepts and presenting both the searching
procedures and the formulation of the algorithm in detail.

We proceed first defining the notion of a goal reachability noting
that there are three possible situations here. Let Gn be the cur-
rent goal in list goals = ⟨G0, G1, . . . , Gn⟩. Let G+

n stand for ‘Gn is
reached’. Let list proof(G+

n) stand for a sequence of formulae satis-
fying the definition of an NPComp proof of Gn. Firstly, a goal Gn

can be some formula B and to reach such a goal we must have a
non-discarded formula in list proof simply graphically identical to
B. Secondly, a goal Gn can have a form [A]B and to reach such a
goal we must have a proof list proof(B+) such that there exists a
non-discarded assumption A ∈ list proof and B is the last formula
of list proof. Finally, a goal can be a contradiction, i.e. we need
to have in list proof two contradictory statements, A and ¬A and
abbreviated as ⊥.

Definition 3 (Current goal reachability). Current goal,
Gn, 0 ≤ n, occurring in list goals= ⟨G0, G1, . . . , Gn⟩, is reached
if

• Gn is some formula B and there is a formula A ∈ list proof
such that A is not discarded and A = B or

Natural deduction in a paracomplete setting 233

• Gn is of the form [A]B and there is a list proof(B+) such that
a non-discarded assumption A ∈ list proof and B is the last
formula of list proof.

• Gn is a contradiction and there are two contradictory state-
ments, A ∈ list proof and ¬A ∈ list proof.

When we generate list goals we commence it with the initial goal,
which is either a formula to be proved from some set of assumptions
or as a theorem (i.e. in the resulting proof all assumptions should
be discarded), or a contradiction.

4.1 Proof-searching procedures

First of all, to simplify search, we introduce two new rules, that are
derivable in NPComp:

∨ ⊃1
(A ∨B) ⊃ C

A ⊃ C
∨ ⊃2

(A ∨B) ⊃ C

B ⊃ C

Now we will give the definition of an algo-derivation and overview
the proof search procedures for PComp.

Definition 4 (Algo-derivation NPCompALG). A PComp
algo-derivation, abbreviated as NPCompALG, is a pair
(list proof, list goals) whose construction is determined by
the searching procedure outlined below.

Searching Procedures. The formulation of the searching pro-
cedures below utilises various techniques that have been originally
defined for the classical setting [10] and also formed part of the
proof-search for temporal logic [9]. Additionally, we use procedures
that were introduced for paraconsistent logic PCont [7] but are also
useful in the PComp setting. Finally, there are novel techniques
that are introduced specifically for the setting of PComp to tackle
its paracomplete nature.

Procedure (1). Here we search for an applicable elimination
ND-rule in order to update list proof. If we have a formula, or
several formulae, which enable an application of an elimination ND-
rule, we apply this rule and update list proof by the conclusion of

234 A.E. Bolotov, V.O. Shangin

this rule. Procedure 1 terminates when either the current goal is
reached or there are no applicable elimination rules.

Procedure (2). We apply procedure 2 when Procedure 1 ter-
minates but the current goal is not reached. Here we distinguish
two subroutines.

Procedure (2.1). This subroutine looks at the structure of
the current goal and updates list proof and list goals, respectively,
by new goals or new assumptions. Let list proof = P1, . . . Pk and
list goals = G1, . . . , Gn, where Gn is the current goal. A new goal,
Gn+1, is generated by applying the subroutines (2.1.1) – (2.1.9)
below depending on the various possible structures of Gn: Gn =
A ∧ B|A ∨ B|A ⊃ B|¬(A ∧ B)|¬(A ∨ B)|¬(A ⊃ B)|L|¬¬A, where
A,B are any formulae and L ∈ Lit.

(2.1.1) Γ ⊢ ∆, A ∧B −→ Γ ⊢ ∆, A ∧B,B,A
(2.1.2.1) Γ ⊢ ∆, A ∨B −→ Γ ⊢ ∆, A ∨B,A⋆

(2.1.2.2) Γ ⊢ ∆, A ∨B −→ Γ ⊢ ∆, A ∨B,B⋆

(2.1.3) Γ ⊢ ∆, A ⊃ B −→ Γ, A ⊢ ∆, A ⊃ B,B
(2.1.4) Γ ⊢ ∆,¬(A ⊃ B) −→ Γ ⊢ ∆,¬(A ⊃ B), A,¬B
(2.1.5) Γ ⊢ ∆,¬(A ∨B) −→ Γ ⊢ ∆,¬(A ∨B),¬A,¬B
(2.1.6) Γ ⊢ ∆,¬(A ∧B) −→ Γ ⊢ ∆,¬(A ∧B),¬A ∨ ¬B
(2.1.7.1) Γ ⊢ ∆, F −→ Γ ⊢ ∆, F,⊥
(2.1.7.2) Γ ⊢ ∆, F −→ Γ, F ⊃ p ∧ ¬p ⊢ ∆, [F ⊃ p ∧ ¬p]F ⋆⋆

(2.1.8) Γ ⊢ ∆,¬¬A −→ Γ ⊢ ∆,¬¬A,A
(2.1.9) Γ ⊢ ∆, [A]B −→ Γ, A ⊢ ∆, B

⋆ when the current goal is disjunction, we apply Procedure
(2.1.2.1), if it fails, i.e. we have not reached A, the left dis-
junct of the desired goal A ∨ B, this subroutine is deleted
and we apply Procedure (2.1.2.2). We terminate these sub-
routines if they are not successful in deriving goals A or B
straightforwardly, using the elimination rules.

⋆⋆ where F ∈ Lit or F = A ∨ B. Procedure (2.1.7.2) applies
when Procedure (2.1.7.1) fails. Also, in Procedure (2.1.7.2)
variable p should be fresh.

Marking. Applying Procedure (2.1) we mark literals and for-
mulae of the type A ∨B if we start proof by refutation. The mark

Natural deduction in a paracomplete setting 235

means that in reaching these goals we cannot any longer apply rea-
soning by refutation.

Let us explain Procedure (2.1.7) which deals with an unreached
goal, F , which is either a literal or A∨B. When we cannot reach the
current goal, F , and Procedures (2.1.1) – (2.1.4) are not applicable,
we follow similar to the classical refutation. However, now, in the
new setting, we deal with this situation differently. Namely, first,
we look for the contradictions in the proof — Procedure (2.1.7.1).
If no contradictions are found then we turn into the refutation style
proof noting that ‘refutation’ is understood in a very specific for this
logic sense. Namely, once we have assumed F ⊃ (p ∧ ¬p), where p
is fresh, we aim at achieving the goal F . If this can be done then
we can always add to list proof a proof of F from F ⊃ (p∧¬p) and
F by ⊃p.

Procedure (2.2). If Procedure (2.1) terminates and the current
goal is not reached we apply Procedure (2.2). Here we analyse
compound formulae in list proof in order to find sources for new
goals. Unlike in classical case, here only two types of compound
formulae in list proof can serve as sources for new goals, namely
disjunctive and implicative formulae but not of the type A ⊃ ⊥. If
one of these formulae is found then its structure will determine the
new goal to be generated.

(2.2.1) Γ, A ∨B ⊢ ∆, C −→ Γ ⊢ ∆, [A]C Γ ⊢ ∆, [B]C
(2.2.2) Γ, A ⊃ B ⊢ ∆, C −→ Γ ⊢ ∆, C, A

We do not go further into the details of applying both procedures
which can be found in [7].

Procedure (3). This is the standard, for our technique, routine,
which checks the application of Definition 3 to establish if the cur-
rent goal in the sequence list goals has been reached: when we reach
the current goal, Gn, we delete Gn from the sequence list goals and
set Gn−1 as the current goal.

Procedure (4). Procedure (4) results in finding a relevant intro-
duction rule to be applied. Procedures (2.1.1) – (2.1.8) are associ-
ated with correspondent introduction rules. Recall that Procedure
(2.1) splits a conjunctive goal and is associated with the ∧in rule,
i.e. given that both goals A and B by applying this rule we would
obtain the desired goal A ∧B. Similarly, Procedure (2.2) looks for

236 A.E. Bolotov, V.O. Shangin

goals A or B, etc; so the following table represents the association
of the procedures with the introduction rules as follows:

Procedure (2.1.1) −→ ∧in

Procedure (2.1.2.1) −→ ∨in1

Procedure (2.1.2.2) −→ ∨in2

Procedure (2.1.3) −→ ⊃in

Procedure (2.1.4) −→ ¬⊃in

Procedure (2.1.5) −→ ¬∨in

Procedure (2.1.6) −→ ¬∧in

Procedure (2.1.7) −→ ⊃ p
Procedure (2.1.8) −→ ¬in

As we have already noted, the specifics of our searching technique
is complete determination of the application of the introduction
rules. Any application of such a rule is strictly determined by the
current goal in list goals.

4.2 Proof-searching algorithm NPCompALG

In this section we explain the proof-searching algorithm and give
its pseudo-code. The components of the algorithms described below
correspond to the searching procedures above.

1. Initialisation. The algorithm commences by setting some
initial task G0 as its initial goal, G0 = G.

2. Checking the reachability. We apply a recursive call to check
if the current goal is reached. Letting Gcur to abbreviate the current
goal we formalise this recursive check as follows

∀Gi(0 ≤ i) ∈ list goals((Gi = Gcur) −→ Procedure (3)(Gi) = true).

Thus, Procedure (3) checks the reachability of the current goal,
for example, after initialisation, we would let G0 = Gcur and apply
Procedure (3)(Gcur) = true.

3. Searching for applicable elimination rules. If the current
goal is not reached and it is not the initial goal, we apply Procedure
(1) determining an applicable elimination rule.

(Reached(Gcur) = true)AND (Gcur ̸= G0) −→
Procedure (1)(⟨list proof, list goals⟩) = true.

If there are no applicable elimination rules we fire Procedure (2).

Natural deduction in a paracomplete setting 237

4. Analysis of the current goal and compound formulae in
list proof. Update list proof and list goals depending on the struc-
ture of the current goal Gcur or on the search for potential sources
of new goals in list proof.

(Procedure (1)(list proof) = false) −→
Procedure (2)(⟨list proof, list goals⟩) = true.

5. Introduction rules. If the current goal is reached and it is not
the initial goal, we apply Procedure (4) determining an applicable
introduction rule.

(Reached(Gcur) = true) AND (Gcur ̸= G0) 5
−→ Procedure (4)(⟨list proof, list goals⟩) = true.

6 Termination.
6a. Reached(Gcur) = true AND Gcur = G0 −→ EXIT . If the

current goal is reached and it is the initial goal, terminate, proof
found.

6b. If the current goal is reached and no more elimination rules
are applicable and no more compound formulae in list proof can
serve as sources for new goals then terminate, no proof found.

(Reached(Gcur) = false) AND
(Procedure (2)(⟨list proof, list goals⟩) = false) AND
(Procedure (4)(⟨list proof, list goals⟩) = false) −→ EXIT .

This search terminates if we managed to reach the initial goal,
G0, or if the current goal is not reachable (i.e. no more updates
for list proof and list goals are possible). In the former case we have
found the desired proof, in the latter case there is no proof and we
can construct a counterexample. Let us now describe the mark-
ing technique for formulae in list proof and list goals that prevent
infinite loops when we apply procedures above. Thus, we mark:

• any formula in list proof once it serves as a premise of the
rules invoked in Procedure (1);

• any formula in list proof once it serves as a source of new goals
in Procedure (2.2) as well as new goals themselves. This pre-
vents looping in Procedure (2.1.2) — see ⋆ comments above;

238 A.E. Bolotov, V.O. Shangin

• in some cases marks are deleted, for example, when A ∈
list proof served as a source of a new goal B, but then B
has been reached, hence discarded. In this case we delete the
mark for A enabling this formula again to serve as a source
of new goals.

Now we are ready to formulate a searching algorithm.

Algorithm NPCompALG. list proof = list goals = ∅. Given a
task Γ ⊢ G,

(1) Gcur = G.

(Γ ̸= ∅) −→ (list proof = Γ, list goals = G, go to (2)) else

list goals = G, go to (2).

(2) Procedure(3)(Gcur) = true.

∀Gi(0 ≤ i) ∈ list goals ((Gi = Gcur) −→
(Procedure (3)(Gi) = true)).

(2a) Reached(Gcur) −→ go to (3) else

(2b) go to (4).

(3) Procedure(4)(⟨list proof, list goals⟩) = true.

(3a) (Reached(Gcur) = true)AND (Gcur = G) −→
go to (6a) else

(3b) Procedure (4)(⟨list proof, list goals⟩) = true, go to 2.

(4) Procedure (1)(⟨list proof⟩) = true.

(4a) Elimination rule is applicable, go to (2) else

(4b) (if there are no compound formulae in list proof to which
an elimination rule can be applied), go to (5).

(5) Procedure (2)(⟨list proof, list goals⟩) = true.

(5a) Procedure (2.1)(⟨list proof, list goals⟩) = true (analysis
of the structure of Gcur), go to (2) else

Natural deduction in a paracomplete setting 239

(5b) Procedure (2.2)(⟨list proof, list goals⟩) = true (search-
ing for the sources of new goals in list proof), go to (2)
else

(5c) (if all compound formulae in list proof are marked,
i.e. have been considered as sources for new goals),
go to (6b).

(6) Terminate(NPCompALG).

(6a) The desired ND proof has been found. EXIT,

(6b) No ND proof has been found. EXIT.

4.3 Algo-proof examples

As an example of an algorithmic ND proof we apply NPCompALG

to search for the proof of Pierce Law (Axiom 10).

NPCompALG Example: ((p ⊃ q) ⊃ p) ⊃ p

We commence the proof with the main goal, G0 = ((p ⊃ q) ⊃
p) ⊃ p. According to the classical search Procedure (2.1.3) its
antecedent (p ⊃ q) ⊃ p becomes the new assumption, and its con-
sequent, p — the new goal, G1 = p.

list proof annotation list goals

G0 = ((p ⊃ q) ⊃ p) ⊃ p
1. (p ⊃ q) ⊃ p assumption G0, G1 = p

The current goal G1 = p cannot be reached so we apply Proce-
dure (2.1.7). Firstly, by Procedure (2.1.7.1) we search for ⊥, i.e.
the presence of contradictions in the proof. This fails hence we
apply Procedure (2.1.7.2) and set up the new task — to reach the
current literal goal (p in our case) from goal ⊥ ⊃ p, where goal ⊥
stands for some contradictory statements not occurring in the proof
earlier. We chose ⊥ = r ∧ ¬r. So our new assumption at step 2 is
p ⊃ (r ∧ ¬r) and we aim to reach G2 = p.

list proof annotation list goals

G0 = ((p ⊃ q) ⊃ p) ⊃ p
1. (p ⊃ q) ⊃ p assumption G0, G1 = p
2. p ⊃ (r ∧ ¬r) assumption G0, G1, G2 = p

240 A.E. Bolotov, V.O. Shangin

From this moment we are in the refutation style proof under-
stood specifically to this logic. Therefore, we are looking for new
assumptions considering compound formulae in the proof. Thus,
applying Procedure (2.1) we analyse (p ⊃ q) ⊃ p at step 1 and set
up the new goal G3 = p ⊃ q. This is an implicative goal therefore
by Procedure (2.1.3), the new assumption is p (at step 3) and the
new goal G4 = q.

list proof annotation list goals

G0 = ((p ⊃ q) ⊃ p) ⊃ p
1. (p ⊃ q) ⊃ p assumption G0, G1 = p
2. p ⊃ (r ∧ ¬r) assumption G0, G1, G2 = p

G0, G1, G2, G3 = p ⊃ q
3. p assumption G0, G1, G2, G3, G4 = q

The next few steps are applications of elimination rules. First,
we eliminate implication from 2 and 3 deriving r ∧ ¬r at step 4
and then eliminate conjunction from the latter deriving formulae
at steps 5 and 6.

list proof annotation list goals

G0 = ((p ⊃ q) ⊃ p) ⊃ p
1. (p ⊃ q) ⊃ p assumption G0, G1 = p
2. p ⊃ (r ∧ ¬r) assumption G0, G1, G2 = p

G0, G1, G2, G3 = p ⊃ q
3. p assumption G0, G1, G2, G3, G4 = q
4. r ∧ ¬r 2, 3,⊃ el G0, G1, G2, G3, G4

5. r 4,∧ el G0, G1, G2, G3, G4

6. ¬r 4,∧ el G0, G1, G2, G3, G4

Since we are at the refutation style proof, applying elimination
rules we are looking at the possibility to use ¬ in2 rule which needs
two contradictory statements. Now we have them at steps 5 and 6.
Note that the application of ¬ in2 allows, in general, to introduce
any formula as a consequence of the contradiction. However, in our
setup the application of this rule is strictly determined so we aim at
deriving the current goal only. Thus, at step 7 we get q. This gives
us the goal G4. The previous goal — G3 = p ⊃ q and according to
Procedure (2.1.3) we derive p ⊃ q at step 8 discharging assumption

Natural deduction in a paracomplete setting 241

3 and formulae [3-7]. Next, from 1 and 8 we derive p by ⊃ el which
gives us the reachability of goal G2.

list proof annotation list goals

G0 = ((p ⊃ q) ⊃ p) ⊃ p
1. (p ⊃ q) ⊃ p assumption G0, G1 = p
2. p ⊃ (r ∧ ¬r) assumption G0, G1, G2 = p

G0, G1, G2, G3 = p ⊃ q
3. p assumption G0, G1, G2, G3, G4 = q
4. r ∧ ¬r 2, 3,⊃ el G0, G1, G2, G3, G4

5. r 4,∧ el G0, G1, G2, G3, G4

6. ¬r 4,∧ el G0, G1, G2, G3, G4

7. q 5, 6¬ in2 G0, G1, G2, G3 |G4 reached
8. p ⊃ q 7 ⊃ in, [3-7] G0, G1, G2 |G3 reached
9. p 1, 8 ⊃ el G0, G1 |G2 reached

The current goal is G1 = p. At this stage we apply ⊃p which is
associated with Pierce Law. The application of this rule looks as
follows:

[p ⊃ (r ∧ ¬r)], p

p
.

Thus, we derive p at step 9 discharging assumption 2 and dis-
carding formulae [2-9]. Finally, introducing implication to step 9
we derive the desired formula reaching the main goal G0.

list proof annotation list goals
G0 = ((p ⊃ q) ⊃ p) ⊃ p

1. (p ⊃ q) ⊃ p assumption G0, G1 = p
2. p ⊃ (r ∧ ¬r) assumption G0, G1, G2 = p

G0, G1, G2, G3 = p ⊃ q
3. p assumption G0, G1, G2, G3, G4 = q
4. r ∧ ¬r 2, 3,⊃ el G0, G1, G2, G3, G4

5. r 4,∧ el G0, G1, G2, G3, G4

6. ¬r 4,∧ el G0, G1, G2, G3, G4

7. q 5, 6¬ in2 G0, G1, G2, G3 |G4 reached
8. p ⊃ q 7 ⊃ in, [3-7] G0, G1, G2 |G3 reached
9. p 1, 8 ⊃ el G0, G1 |G2 reached
10. p 9 ⊃p, [2-9] G0 |G1 reached
11. ((p ⊃ q) ⊃ p) ⊃ p 10 ⊃ in, [1-9] |G0 reached

242 A.E. Bolotov, V.O. Shangin

4.4 Correctness

The correctness of the proof searching algorithm NPCompALG con-
sists of showing that it satisfies the following three properties: ter-
mination, soundness and completeness.

Theorem 2. NPCompALG terminates for any input formula.

Proof. Proof of the termination of NPCompALG consists of show-
ing that list proof and list goals are finite. This will follow from
establishing that NPCompALG does not contain infinite loops. The
marking technique ensures that there is finite number of applica-
tion of elimination rules (Procedure (1)), as well as it guarantees
that number of formulae introduced into list proof and list goals by
Procedure (2) is also finite. The way how we manage disjunctive
goals A∨B and ¬(A∧B) and goals-literals also ensures the absence
of infinite loops.

As mentioned above, introduction rules are completely deter-
mined by the algorithm. The reachability of the current and the
type of the previous goal determines the relevant introduction rule.
Also, though the specific for PComp, Pcomp¬ in rule, in general,
allows to derive any formula from the contradiction, the applica-
tion of this rule is strictly determined by the searching procedures,
namely, by Procedure (2.1.7), hence the formula that we derived
from a contradiction is always the one mentioned in list goals. 2

Theorem 3. NPCompALG is sound.

Proof. Note that according to its construction, list proof in
NPCompALG, is in fact an NPComp proof. Hence, if there is an
NPCompALG of F then its list proof is a proof of F in the system
NPComp. Therefore, as NPComp is sound then so is NPCompALG.

2

Lemma 1. A PComp-model truth-value assignment ψ for a formula
F, ψ(F), is as follows:

1. ψ(¬¬A):
1.1. If ψ(¬¬A) = 1 then ψ(A) = 1;
2. ψ(A ∧B):
2.1. If ψ(A ∧B) = 1 then ψ(A) = 1 and ψ(B) = 1;

Natural deduction in a paracomplete setting 243

3. ψ(A ∨B):
3.1. If ψ(A ∨B) = 1 then

3.1.1 ψ(A) = 1; or
3.1.2. ψ(B) = 1;

4. ψ(A ⊃ B):
4.1. If ψ(A ⊃ B) = 1 then

4.1.1 ψ(A) = 0; or
4.1.2. ψ(B) = 1; or
4.1.3. ψ(A) = f ;

5. ψ(¬(A ∧B)):
5.1. If ψ(¬(A ∧B)) = 1 then ψ(¬A ∨ ¬B) = 1;
6. ψ(¬(A ∨B)):
6.1. If ψ(¬(A ∨B)) = 1 then ψ(¬A ∧ ¬B) = 1;
7. ψ(¬(A ⊃ B)):
7.1. If ψ(¬(A ⊃ B)) = 1 then ψ(A ∧ ¬B) = 1.

Proof. Proof immediately follows from the matrix definitions of
PComp connectives. 2

Lemma 2. From list proof(F−), an exhausted and unsuccessful
algo-proof for a PComp formula F , it is possible to extract a
counter-model for F .

Proof. Similar to [25] we generalise Hintikka set technique [15].
According to the construction of an algo-proof for F , if it is ex-
hausted and non successful then the algorithm terminates with all
its procedures applied and the final goal, F not reached. We show
that in this case list proof contains a set of literals from which we
can build a model M = ⟨M,ψ⟩ such that ψ(F) = 0 or ψ(F) = f .
We omit the details of the proof but will provide an example of an
unsuccessful algo-proof and the corresponding counter-model in the
next section.

2

Theorem 4. PCompALGND
is complete.

Proof. We must show that for every valid formula, A,
PCompALGND

finds a PCompND proof. This is a simple conse-
quence (by contraposition) of Lemma 2. 2

244 A.E. Bolotov, V.O. Shangin

Theorems 2, 3 and 4 imply the following fundamental property
of our algorithm:

Theorem 5. For any input formula A, the PCompALGND
termi-

nates either building up a PCompND-proof for A or providing a
counter-model.

5 Conclusion and future work

We have presented a proof search technique in natural deduction
system for paracomplete logic PComp. To the best of our knowl-
edge, there is no other similar work on the automation of paracom-
plete natural deduction systems. Our developments presented in
this paper form basis for the development of automated goal di-
rected techniques for more expressive formalisms mentioned above.
The feasibility of these extensions is based on the systematic na-
ture of the approach which we follow to build natural deduction
systems. When we started in our earlier works with the classical
setting, we have managed to construct the rules of the natural de-
duction system for classical propositional [11] and first order logics
[10] which enable an efficient extensions to more expressive frame-
works of linear-time temporal logic [8] and branching-time logic [12]
and to the setting of dynamic normative systems [6]. All these sys-
tems are still based on the classical setting which makes them only
applicable to the complete and consistent specifications. Further,
the developments of the ND calculus for the paraconsistent logic
PCont [7] and the current paper are dealing with inconsistent and
incomplete specifications, respectively. Due to the coherence of the
approaches to build the natural systems above, it looks feasible
to combine paraconsistent and paracomplete ND systems together
which will form basis for temporal and normative extensions. These
will be part of our future explorations.

Similarly, our initial proof search technique for ND in classical
setting, was incorporated and further extended for the linear-time
case and to large extend updated to the setting of paraconsistent
and paracomplete logics. This gives us confidence in the success of
further extensions of the proof search for the above combinations
of logic so we will aim at constructing more expressive formalisms:

Natural deduction in a paracomplete setting 245

ND1 Combining paracomplete and paraconsistent frameworks.

ND2 Extending this combination to the frameworks of linear and
branching-time logics, and

ND3 to the framework of deontic reasoning.

Finally, aiming at practical implementation of the ideas presented
in this paper, we will target the following related developments:

• Implementation of the proof-search technique for the setting
of paraconsistent and paracomplete logics;

• Application of these developments to a suitable use case;

• Study of complexity and refinements of the proof search pro-
cedure.

References

[1] Avron A. Natural 3-valued logics — characterization and proof theory
// The Journal of Symbolic Logic. 1991. Vol. 56(1). P. 276 – 294.

[2] Avron A., Lev I. A formula-preferential base for paraconsistent and
plausible non-monotonic reasoning. // Proceedings of the Workshop
on Inconsistency in Data and Knowledge (KRR-4), Int. Joint Conf. on
AI (Ijcai 2001). 2001. P. 60–70.

[3] Basin D., Matthews S., Viganò L. Natural deduction for non-classical
logics // Studia Logica. 1998. N. 60(1). P. 119–160.

[4] Batens D. Paraconsistent extensional propositional logics // Logique
et Analyse. 1980. Vol. 23. P. 127–139.

[5] Bolotov A. Handling Periodic Properties: Deductive Verification for
Quantified Temporal Logic Specifications // Fifth International Con-
ference on Secure Software Integration and Reliability Improvement,
SSIRI 2011, 27–29 June, 2011, Jeju Island, Korea. 2011. P. 179–186.

[6] Bolotov A., Basso A., Grigoriev O. Deontic Extension of Deductive
Verification of Component Model: Combining Computation Tree Logic
and Deontic Logic in Natural Deduction Style Calculus // Proceedings
of IICAI-2009. 2009. P. 166–185.

[7] Bolotov A., Shangin. V. Natural Deduction System in Paraconsistent
Setting: proof search for PCont // Journal of Intelligent Systems. 2012.
Vol. 21. N. 1. P 1–24.

246 A.E. Bolotov, V.O. Shangin

[8] Bolotov A., Basukoski A., Grigoriev O., Shangin V. Natural deduction
calculus for linear-time temporal logic. // Joint European Conference
on Artificial Intelligence (JELIA-2006). 2006. P. 56–68.

[9] Bolotov A., Grigoriev O., Shangin V. Automated natural deduction
for propositional linear-time temporal logic // the Proceedings of the
Time-2007, International Symposium on Temporal Representation and
Reasoning, June, 2007.

[10] Bolotov A., Bocharov V., Gorchakov A., Makarov V., Shangin V. Let
Computer Prove It // Logic and Computer. M.: Nauka, 2004, (In
Russian).

[11] Bolotov A., Bocharov V., Gorchakov A., Shangin V. Automated first
order natural deduction // Proceedings of the 4th Indian International
Conference on Artificial Intelligence (IICAI-2009): Tumkur, 16–18 De-
cember 2009. P. 1292–1311.

[12] Bolotov A., Grigoriev O., Shangin V. Natural deduction calculus for
computation tree logic // IEEE John Vincent Atanasoff Symposium
on Modern Computing. 2006. P. 175–183.

[13] Clarke E., Jha S., Marrero W. R. Using state space exploration and
a natural deduction style message derivation engine to verify security
protocols // Proceedings of the IFIP TC2/WG 2.2, 2.3 International
Conference on Programming Concepts and Methods, June 1998. P. 87–
96.

[14] Fitch F. Symbolic Logic. NY: Roland Press, 1952.

[15] Hintikka J. Notes on the quantification theory // Commentationes
physico-mathematicae. Societas scientiarum Fennica, 1955. Vol. 12, N.
17.

[16] Jaskowski S. On the rules of suppositions in formal logic // Polish Logic
1920–1939. Oxford Univ. Press, 1967. P. 232–258.

[17] Kamide N. Natural deduction systems for Nelson’s paraconsistent logic
and its neighbors // Journal of Applied Non-Classical Logics. 2005. Vol.
15 (4).

[18] Makarov V. Automatic theorem-proving in intuitionistic propositional
logic // Modern Logic: Theory, History and Applications. Proceedings
of the 5th Russian Conference. StPetersburg, 1998. (In Russian).

[19] Middelburg C. A Survey of Paraconsistent Logics // The Computing
Research Repository (CoRR). Vol.1103.4324, 2011.

[20] Naddeo A. Axiomatic Framework applied to Industrial Design Problem
formulated by Para-complete logics approach: the power of decoupling

Natural deduction in a paracomplete setting 247

on Optimization-Problem solving // Proceedings of Fourth Interna-
tional Conference on Axiomatic Design. 2006. P 1–8.

[21] Nelson D. Constructible falsity // Journal of Symbolic Logic. 1949. Vol.
14. P. 16–26.

[22] Pfenning F. Logical frameworks // Handbook of Automated Reason-
ing, J. A. Robinson and A. Voronkov eds. Elsevier, 2001. Chapter XXI,
P. 1063–1147.

[23] Popov V. Sequence axiomatisation of simple paralogics // Logical In-
vestigations. 2010. Issue 16. P. 205–220. (In Russian).

[24] Quine W. On natural deduction // Journal of Symbolic Logic. 1950.
Vol. 15. P. 93–102.

[25] Shangin V. Natural deduction systems of some logics with truth-value
gluts and truth-value gaps // Logical investigations. M.-SPb: C.G.I.,
2011. P. 293–308. (in Russian).

[26] Sieg W., Byrnes J. Normal natural deduction proofs (in classical logic)
// Studia Logica. 1998. Vol. 60. P. 67–106.

[27] Wooldridge M. Reasoning about Rational Agents. MIT Press, 2000.

