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abstract. One of the basic question we can ask about truth
in a formal setting is what, if anything, we gain when we have
a truth predicate at disposal. For example, does the expressive
power of a language change or does the proof strength of a theory
increase?

Satisfaction classes are often described as complicated model
theoretic constructions unable to give useful information toward
the notion of truth from a general point of view. Their import
is narrowed to a dimension of pure technical utility and curiosity.
Here I offer an application of satisfaction classes in order to show
that they can have a relevant role in confronting proof theoretical
equivalent theories of truth.
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1 Tarskian truth
The (broadly) Tarskian theory of truth has a prominent role in the
field of formal truth theories, and it is the forced starting point
for any further reflection toward the notion of arithmetical truth.
Sometimes, such a theory is also called ‘there is a full (not inductive)
satisfaction class ’ or, shortly, PA(S)−. It consists, apart from the
axioms of the base theory PA (Peano Arithmetic in its usual first
order formulation), of the truth-compositional axioms inspired by
the familiar Tarskian definition of truth. In other words PA(S)−
is the theory in the language LTr := LPA ∪ {Tr}, yielded by the
union of the axioms of PA in LPA (which means that we do not
have full induction) with the truth principles:
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1. ∀φ(Atomic(φ) → Tr(φ) ↔ (Tr∗(φ));

2. ∀φ(Tr(¬φ)) ↔ (¬Tr(φ));

3. ∀φ∀ψ(Tr(φ&ψ)) ↔ (Tr(φ) &Tr(ψ));

4. ∀φ∀i((Tr(∀vi(φ))) ↔ ∀tT r(φ(t/vi)))1.

This is the usual way of writing down the axioms and, though
comfortable, it is, strictly speaking, incorrect. In fact, a lot of coding
apparatus has been suppressed to achieve a greater readability. To
be rigorous we should write axiom 2, for example, like this:

∀x∀y{Sent(x) &Sent(y) &Neg(y, x)→ [Tr(y) ↔ ¬Tr(x)]}.

Here I shall persist with the most perspicuous presentation, but
keep in mind the right form. The name PA(S)− should then be
explained, because it carries important information.

When studying truth theories, it is often said that a background
theory of syntax is needed. Without it, formulating axioms for a
truth predicate and working out simple operations is impossible.
We need to ascribe truth to so called ‘truth-bearers’, and a theory
of syntax is intended to give us basic information about how these
entities behave. One would expect a theory of syntax to consist
of principles about linguistic expressions and this was exactly the
case in the original work of Tarski. However, explicit formal the-
ories of syntax, in the style of concatenation theories i.e., are not
much widespread among truth-theorists. The reason is that, after
Gödel, we know that a very good deal of syntax can be developed
in PA (as in even weaker arithmetical theories) and, accordingly,
we can correlate natural numbers and symbols of the language of
PA. There are many ways to think of this correspondence between
strings of symbols and numbers, but one often adopted is the easiest
one: strings of symbols are identified with corresponding numbers.

1I am here assuming a substitutional interpretation of quantifiers.
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2 Satisfaction classes and recursive saturation2

2.1 Non Standard Sentences and Satisfaction Classes

Thanks to Gödel’s arithmetization of syntax we can use formulas of
the language of PA, LPA, in order to talk about the syntax of this
very language. In particular we find a correspondence between the
set of sentences in LPA and the elements of the domain of N , the
standard model of arithmetic, whose domain contains all and only
standard natural numbers.

One of the immediate consequences of compactness is that PA
has, beside the standard modelN , also different models, non isomor-
phic to N ; it has non standard models3. Let M be one of these non
standard models, what would happen if we were to use M instead
of N as a base for arithmetization? What would happen if we
coded expressions of our language using not standard elements in
the domain of N but those that are in the domain of M? What
would happen if we also used non standard numbers?

The first consequence would be the existence, beside standard sen-
tences (those sentences coded by standard numbers), of new strange
non standard sentences, coded by non standard elements in M4. In
fact, among the many syntactical properties that can be represented
in PA we can obviously define that of being a sentence of the lan-
guage of PA, since there is a formula ‘Sent(n)’ which is true of n
if and only if n is a code of a sentence of LPA. Until we consider
the standard model of PA, as is natural doing, this works as ex-
pected. However, in non-standard models, the formula ‘Sent(x)’ is
going to be satisfied by non-standard numbers too. The reason is
the Overspill Principle. According to it, if a formula is such that
infinitely many standard numbers satisfy it, then — when we have
a non-standard model — some non-standard number will satisfy it
too. Clearly the formula ‘Sent(x)’ is satisfied by infinitely many

2The literature on satisfaction classes and recursive saturation is highly tech-
nical and difficult. We make general reference to [6], [2], [9], [8]. Personally, I
have to thank Fredrik Engström for his patience in explaining me the quibbles
of satisfaction classes. I certainly owe what I have understood (if any) to him
and his long mails.

3For a good brief introduction to non standard models see [1, Ch. 25]
4The fundamental work is [13].
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standard numbers, so when M |= PA is non standard, we have that
M |= Sent(b) for some b ∈ M , and b non standard (similar for
the syntactical notion of Term, Formula and so on). The existence
of non-standard numbers that, according to the model, code sen-
tences, drags us towards the realm of non-standard sentences. Very
roughly, non standard sentences are sentences with a non-standard
structure.

Non-standard sentences can be identified with non-standard ele-
ments that the model M ‘thinks’ to be actual sentences (those non-
standard numbers that code sentences in the sense of M). It is not
easy to give a clear description of what non standard sentences are.
I propose just an example. Consider the sentence in LPA(¬0 = 0).
This is a case of a standard sentence that N (and then M) rec-
ognizes to be a sentence, and such that it can be identified with
its standard natural number of Gödel. We have a similar example
with (¬0 = 0)&(¬0 = 0) and (¬0 = 0)&(¬0 = 0)&(¬0 = 0), where
the number of conjuncts is a standard natural number, (2 and 3 re-
spectively). If the number of conjuncts is a non-standard number,
for instance (¬0 = 0)&(¬0 = 0)& . . .&(¬0 = 0) (where the dots
‘. . . ’ stand for a-many repetitions of the sentence (¬0 = 0), and a
is a non-standard number) we do not deal with a standard sentence
anymore (N cannot recognize it as a sentence), we have obtained a
non-standard sentence and M (if it contains a) can recognize it to
be a sentence.

Regarding non-standard sentences a natural question is whether
and how they are true. We know that a truth predicate, ‘Tr’ such
that N |= Tr([φ]) ↔ φ for every sentence φ (where [φ] is the code
of φ), is not definable in LPA (for Tarski’s undefinability theorem).
This is the reason why we had to add such a new predicate together
with axioms governing it, obtaining the truth theory PA(S)−. The
same claim holds for non-standard sentences, since, a fortiori, a
predicate ‘Σ’ such that M |= Σ([φ]) ↔ φ, for every sentence φ in
the sense of M (standard and non-standard) cannot be defined in
M . What should such a predicate Σ be like? First of all it should
agree, at least, with the truth predicate for standard sentences,
namely it should respect Tarskian clauses. Here is where the notion
of satisfaction class must be introduced.
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Once we have added the truth predicate to PA and we have ob-
tained our truth theory PA(S)−, we need to find an extension S in
M for such a new predicate. Namely, given a model M |= PA, S is
supposed to be the set of numbers satifying the axioms of PA(S)−,
M,S |= PA(S)−. When, in a model M |= PA, such a set S is
available, we say that S is a satisfaction class for M . This explains
the name ‘PA plus there is a full (not inductive) satisfaction class’.
A satisfaction class5 S over a model M , then, is a set S of elements
in M , where any element b in S is such that M |= Sent(b) and b sat-
isfies the Tarskian clauses for truth, namely the axioms of PA(S)−.
In other words, S is a suitable extension for the truth predicate,
as governed by Tarskian axioms, possibly including (codes of) non-
standard sentences.

Definition 1.6 If M is a (non-standard) model of PA, a subset S
of M is a satisfaction class if and only if: M,S |= PA(S)−.

Satisfaction classes can be classified further as follows.

Definition 2. A satisfaction class S on M is full if, for every
M |= Sent([φ]), we have that [φ] ∈ S or [¬φ] ∈ S.

Definition 3. A satisfaction class S on M is partial if and only
if there is α belonging to M \ N such that if M |= Sent[φ] and
[φ] < α, then [φ] ∈ S or [¬φ] ∈ S.

The idea here is just that a satisfaction class is full if, for every
formula φ, S contains either φ or its negation and, if the satisfaction
class is partial this is true only for those sentences coded by a (non-
standard) number less than α. Since standard sentences are coded
by standard natural numbers and every standard natural number is
less than every non-standard natural number, it follows that every
satisfaction class (full or partial) behaves in the same way (they are
full) with respect to standard sentences. It is important to notice
that a satisfaction class, even if it is a partial one, has to decide
some non-standard sentence, otherwise we have not a satisfaction
class at all7.

5Though it is called ‘class’ it is a set.
6See [8] and [11].
7I owe this important remark to Fredrik Engström.
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Indeed, if M is non standard we always have some non stan-
dard sentence into the extension of ‘Tr’. Since every axiom of
PA(S)− is subjected to a clause stating that the truth predi-
cate applies to elements satisfying the formula ‘Sent(x)’, when we
have a non-standard model, non-standard numbers can well enter
into the range of the truth predicate. Actually this is not only
possible but mandatory. In fact, PA(S)− proves ∀φ{Sent(φ) →
[(Tr([φ]) ∨ Tr([¬φ]))]}, thus, for every φ such that M |= Sent([φ])
either φ or ¬φ must be in the extension of ‘Tr’, even if φ is non-
standard.

Definition 4. A satisfaction class is inductive if and only if the ex-
panded structure (M,S) satisfies all the induction axioms for every
formula in the language LS = LPA ∪ {S} (Where the new symbol
‘S’ is governed by axioms stating that S is a satisfaction class. In
our cases ‘S’ is substituted with ‘Tr’).

If this is the case, we have ‘PA plus there is a full inductive satis-
faction class’, turning from PA(S)− to PA(S). These two theories
have very different features and strength, but I shall mostly consider
PA(S)− only.

Crossing these definitions we can get other classifications by dis-
tinguishing, with respect to full and partial satisfaction classes,
those satisfaction classes that are inductive and those that are not.

We saw that, as far as standard sentences are concerned, a satis-
faction class agrees with the traditional characterization of Tarskian
truth. The surprising news is that classical compositional axioms
are not enough to shape the truth of non-standard sentences. In
other words, in order to characterize the truth (or falsity) of non-
standard sentences we need some other tool than just compositional
clauses in their standard formulation. If we only stick with Tarskian
axioms, then we are free of constructing many different satisfaction
classes such that they will agree on standard sentences but will dis-
agree on many non-standard sentences. As a result, if a model M
admits a satisfaction class, then it admits many satisfaction classes.
Indeed, if S is a full satisfaction class for a countable M, then there
are continuum many non isomorphic expansions (M,T ) which are
all elementarily equivalent to (M,S).
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This richness should be contrasted with this other fact: though a
model can have many different satisfaction classes, not every model
of PA can have one. Non recursively saturated models, in fact,
cannot have any satisfaction class.

2.2 Recursive saturation
In order to explain the notion of recursive saturation we need some
minimal elementary information8.

Definition 5. If B is a theory, a type over B is:

(i) a set P (x) of formulas containing a finite number of free vari-
ables x (‘x’stands for a sequence of variables).

(ii) P (x) is such that B ∪ {φ(c) | φ(x) ∈ P (x)} is consistent.
(Where ‘c’ stands for a sequence of — possibly new — individ-
ual constants).

Definition 6. A type P (x) is complete if and only if T ∪P (x) is a
syntactical complete theory (that is for every φ(x), T ∪P (x) ⊢ φ(x)
or T ∪ P (x) ⊢ ¬φ(x)).

Definition 7. A type P (x) is principal if and only if there is a
single formula ψ(x) such that T ⊢ ∀x(ψ(x) → φ(x)), for every
φ(x) ∈ P (x).

Definition 8. If M |= B, a type P (x) is realized in M if and only
if there is a ∈ M , such that M |=, φ(a), for every φ(x) ∈ P (x).
Otherwise M omits the type P (x).

For completeness theorem, if P (x) is a type over a theory B, then
B has a model that realizes P (x). Similarly, if P ′(x), P ′′(x). . . are
types over the theory Th(M) of a model M (that is the set of all
the sentences φ such that M |= φ), then there is an elementary
extension M ′ of M that realizes every type P (x).

Definition 9. A type P (x) is recursive if the set {φ(x) | φ(x) ∈
P (x)} is recursive. (Notice that what is recursive is the set of for-
mulas, not the formulas, which can have whatever complexity.)

8It is possible to give the following definitions also in model-theoretic terms
instead of talking of theories. I use the proof theoretic definition in order to
stress the relation of this notion with the notion of truth as axiomatized by
PA(S)−.
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Definition 10. A model M is recursively saturated if and only if
every recursive type over Th(M) is realized in M .

A recursively saturated model can be thought as a big and ho-
mogeneous model. A non-recursively saturated model O is a model
where at least one recursive type (a recursive set P (x) of formulas) is
not realized in O. This means that there are formulas φ(x) ∈ P (x),
for which elements a in O such that O |= φ(a) are not available.
This can happen, for example, when the model is not homogeneous
or it is not big enough. To make it such, we need to extend O to O′

adding new elements a with the desired features.
The fundamental fact now is that if a non-standard model admits

a satisfaction class, then such a model needs to be big and homo-
geneous in this sense: it must be recursively saturated. This is the
sense of Lachlan’s theorem:

Theorem 1 (Lachlan’s theorem9). If M is a non-standard
model of PA with a full not inductive satisfaction class, then M
is recursively saturated.

It is possible to get a similar result also for partial satisfaction
classes too:

Theorem 2.10 If M is a non-standard model of PA with a partial
satisfaction class, then M is recursively saturated.

We can sum up the story stating that if M is non-standard and
it has a satisfaction class (it does not matter whether full or par-
tial, or whether it is inductive or not), then M must be recursively
saturated. Recursive saturation is a necessary condition for a non-
standard model to have a satisfaction class11.

However, recursive saturation is not a sufficient condition to guar-
antee the possibility of a satisfaction class: in fact there exist non
countable recursively saturated models without a full satisfaction
class or an inductive satisfaction class12. Recursive saturation of a

9[12]
10See [6, Theorem 15.5 and proposition 15.4].
11Notice that this is not true for the standard model N. N is not recursively

saturated but it does admit a ‘satisfaction class’.
12See [5].
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non-standard model is a sufficient condition to have a satisfaction
class only together with countability:

Theorem 3. If M is a countable recursively saturated model of
PA, then M admits a satisfaction class.

Notice that this does not mean that every countable recursively
saturated model of PA admits a satisfaction class whatsoever: for
instance it is not enough to have a full inductive satisfaction class.
In fact, PA(S) is famously able to prove the consistency of PA, so
that just models where Con(PA) holds can be expanded to models
of PA(S), and some recursively saturated models are excluded.

It is very important for us to stress that there are non-
standard models of PA such that they are not recursively
saturated. Therefore, there are non-standard models of PA that
do not admit a satisfaction class.

3 Satisfaction classes and axiomatic truth theories
With such results available we can draw some important conse-
quences. The first observation is rather natural and concerns the
relation between satisfaction classes and axiomatic theories of truth.
The notion of satisfaction class has been constructed with the pur-
pose of characterizing the set of all arithmetical truths in a certain
model from a model-theoretic point of view, while an axiomatic set-
ting tries to characterize the behaviour of the truth predicate. It is
clear that such approaches can be considered, in a certain measure,
as two different ways of working at the same problem. We can then
expect an axiomatic theory of truth to give an axiomatization of a
predicate defining a satisfaction class13.

The second, more important observation, is that a model-
theoretic approach to truth can enlighten aspects that a pure proof
theoretic investigation is not able to show. PA(S)− gives us the
clearest example of such a situation. In fact, from a proof theoretic

13In our definition of satisfaction class we used a relation symbol to talk about
the satisfaction of a formula by a sequence of objects, while in the axiomatic
theories we are using a one-place truth predicate. This difference, however, has
not deep effects, at least with regard to our problems. It would have been possi-
ble, for example, to define a satisfaction class avoiding the notion of satisfaction
(as in [2]).
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point of view, PA(S)− is a conservative extension of PA. So with
the addition of the truth axioms in PA(S)−, apparently, we do not
get any new arithmetical information, and, viewed from PA, this
enrichment looks rather useless. We might be tempted to say that
PA and PA(S)− have the same arithmetical content. This, how-
ever, would be a mistake as the application of satisfaction classes
will show.

To better explain the point, consider the theory ACA−14, which
is the axiomatic theory for second order arithmetic (Arithmetic
with Comprehension Axioms), yielded adding to PA axioms for sec-
ond order comprehension preventing full induction. More precisely:
ACA− is formulated in the second order language L2 of second
order arithmetic and is given by adding to PA the axioms

∃X∀y(y ∈ X ↔ φ)

where φ is a formula of L2 without any second order quantifier or
X. Notice that in ACA− there is arithmetical induction only.

As is well known ACA− is conservative over PA. Moreover
ACA− can define a truth predicate for PA. Namely, in ACA−
it can be defined a formula τ(x) such that ACA− ⊢, τ([φ]) ↔ φ.
(Though a truth predicate respecting Tarskian clauses cannot be
defined in ACA−.) Again a natural expectation might be that
ACA− and PA(S)− should be two arithmetically equivalent the-
ories, sharing the same arithmetical content. This is the natural
conclusion given the fact that both additions are conservative over
PA, so that they prove the same arithmetical theorems. Indeed, if
we have full induction, turning to ACA and PA(S)15, we obtain
an interdefinability result. As is well known, ACA can define the
truth predicate of PA(S), and PA(S) can define membership of
ACA. Thus, the moment we drop full induction, even if we lose
this pleasant interdefinability, we might expect the equivalence to
keep holding. As a matter of fact, however, these two theories are
not arithmetically equivalent and the proposed proof theoretic anal-
ysis did not give us all relevant information. If we turn to a model

14See [4].
15These theories are exactly the same as ACA− and PA(S)− except from

the fact that induction of PA is now extended to these new languages.
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theoretic approach, instead, we see clearly that they have a deeply
different arithmetical impact.
ACA− is conservative over PA and each model of PA can be

expanded to a model of ACA−. This is actually how the conserva-
tivity of ACA− is usually proved. So, in this sense, ACA− can be
thought to really have the same arithmetical content of PA. ACA−
keeps characterizing all the models of PA. Hence, if we see PA as a
way to talk about a large class of (arithmetical) structures, ACA−
can be seen as another way to talk of the very same class. This
is a strengthening of the conservativity result: not only do not we
get new arithmetical theorems, we do not restrict the number of
possible models either.

From the supposed equivalence between ACA− and PA(S)− one
would expect a similar situation to keep holding even for PA(S)−,
which, in fact, is conservative over PA too. But, as we know, thing
are very different. Indeed, a non-standard model M of PA is a
model of PA(S)− if and only if M admits a satisfaction class. Un-
fortunately, not every model of PA does. If a non-standard model
of PA is not recursively saturated, then it is no use trying to expand
it to PA(S)−. The reason is just Lachlan’s theorem.

There is a kind of asymmetry between ACA− and PA(S)− then.
Both are conservative over PA, but they affects the models of PA in
very different ways. PA(S)− cannot be taken to be another way of
characterizing the same class of structures since it is able to exclude
some of the models of PA. Thus, claiming that PA(S)− has the
same arithmetical content of PA is not plainly correct. It has extra-
content, for it requires the models to be in a certain precise way:
they must be recursively saturated.

4 A philosophical application
A philosophical insight into the notion of truth is deeply related
to similar issues. Consider, for example, a deflationist approach
to truth, which is probably the most debated proposal nowadays.
Deflationism rejects the traditional philosophical explanation of the
concept. In particular, according to it, truth is claimed not to be
a very deep notion, and the property it stands for, if any, not to
have any metaphysical structure or weight. Opposite to traditional
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approaches, like correspondence theories, truth is claimed to lack
any robust ontological import: truth is an unsubstantial property.

Such an unsubstantiality has been explained by exploiting the
fact that, if truth is characterized using some very simple axioms,
exactly like typical Tarskian ones, we can easily get conservative
extensions of PA in a number of cases. Since, then, conservative
theories are thought to be innocent additions, by using the notion
of conservativity it is possible to make sense of the metaphysical
innocence of truth. If a theory T is conservative over a theory B, T
does not prove anything new regarding what B is about, so that, it
has been suggested, viewed from B, the addition of T is redundant.
If T is our theory of truth, then, truth is harmless in this sense, as
deflationists argue. Consequently, the unsubstantiality of truth can
be identified with the conservativity of its theory. If a truth theory
is conservative, it will not prove anything apart from semantical
claims, and it will not be capable of concrete (read extra semantical)
power. The conservativity of a theory of truth can be taken to be
evidence for the evanescent nature of the property of truth.

Things, however, are not so easy. In fact, as our previous analysis
showed, there is much more content in a theory than that that
can be enlightened by merely proof theoretical means. Possibly,
a theory T can be conservative over B, while not every model of
B be expandable to a model of T ∪ B, so that T can still have
some impact over what B is about. Conservative theories can as
well affect the content of the theory they are added to. A truth
theory like PA(S)− is conservative over PA, nevertheless it makes a
difference. PA(S)− has a rich and interesting arithmetical content
which is at least as rich as the notion of recursive saturation, a
very pivotal tool in model theory. It follows that conservativity is
not a suitable candidate to analyse the alleged unsubstantiality and
innocence of truth; exactly as a mere proof theoretic approach is
not enough to make us able to draw all the relevant consequences.

5 Conclusion
When we take an axiomatic approach to truth, the customary way
of proceeding is that of devising a suitable set of axioms governing
the truth predicate and then studying the logical properties of such
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an axiomatization. In particular, a certain axiomatic theory of truth
is evaluated with respect to its impact over an arithmetical theory
like PA. We check whether it is conservative, whether it is able to
prove new arithmetical theorems or whether it is able to prove the
consistency of PA and so on. Once we have that, it is interesting to
assess what the proof strength of our theory is with respect to other
proposals on the market. We try to put our new axiomatization in
the right place of the hierarchy.

The reflections I proposed are mainly motivational ones. They
are intended to show that a merely proof theoretical evaluations
of theories, and of truth theories in particular, are not, sometimes,
fine grained enough. There might be more differences than those
emerging in proof theoretical terms: two theories with the same
arithmetical proof strength can have very different impacts over the
model of PA, and exhibit a different arithmetical content. This
is absolutely relevant if we are interested in identifying the correct
power of truth theories. But this is also important from a general
philosophical point of view, since, if this point is neglected, meta-
physical misconceptions loom.

The notion of truth is traditionally tackled, into a formal frame-
work, by building either axiomatic systems or semantical interpre-
tations. Where, in the latter case, one proposes a model in which
the truth predicate is interpreted in some nice way. Semantical and
axiomatic approaches do not interact many often, so that the con-
nection between them is rather weak. This is certainly unpleasant
from a general point of view: a model theoretical approach can be
crucial to enlighten important aspects of axiomatic theories and can
offer an important contribution to their evaluation. The consider-
ations above showed a case of this possibility and can be generally
considered as a first step toward a closer collaboration between an
axiomatic and a semantical approach to the notion of truth.
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