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1 Monty Hall: Formulation of the problem
There are two formulations of the puzzles. The first one is more
general:

Monty Hall shows the contestant C three closed doors:
behind one of them there is a prize, the other two are
empty. C chooses a door. Monty Hall opens any of the
other doors, which is empty. Then she asks C whether
he would like to switch the doors, and choose the re-
maining one which is closed. Is it in C’s interest to do
it? (Richard Isaac, The Pleasures of Probability 1995, 3)

The second formulation mentions a particular door chosen by the
contestant:

Monty Hall (MH) hides a prize behind one of three
doors, door 1, door 2, and door 3. The Contestant (C)
has to guess it. Suppose his guess is door 1. Monty Hall,
who knows the location of the prize and will not open

1I am indebted to Antonina Nepejvoda for the supercompilation of the Monty
Hall.



Dynamic logic versus GTS: A case study 201

that door, opens door 3 and reveals that there is no prize
behind it. She then asks C whether he wishes to change
from his initial guess to Door 2. Will changing to door
2 improve C’s chances of winning the prize? (Grinstead
and Snell, Introduction to Probabilities, 1998)

The second formulation of the problem ‘asks for the conditional
probability that C wins if she switches doors, given that she has
chosen door 1 and that Monty Hall has chosen door 3’ (Grinsteas
and Snell). On the other side, the first formulation is about the com-
parative probabilities of two kinds of strategies for C, the ‘switch’
strategy and the ‘stay’ strategy:

We say that C is using the ‘stay’ strategy if she picks
a door, and, if offered a chance to switch to another
door, declines to do so (i.e., he stays with his original
choice). Similarly, we say that C is using the ‘switch’
strategy if he picks a door, and, if offered a chance to
switch to another door, takes the offer. Now suppose
that C decides in advance to play the ‘stay’ strategy.
Her only action in this case is to pick a door (and decline
an invitation to switch, if one is offered). What is the
probability that she wins a car? The same question can
be asked about the ‘switch’ strategy. (Grinstead and
Snell, Introduction to Probabilities, p. 137)

It should come as no surprize that the second formulation lends
itself naturally to a solution in terms of conditional probabilities and
updates in dynamic epistemic logic (DEL). The first formulation, on
the other side, suggests a game-theoretical solution. I will give one.

2 The conditional probabilities account
We consider the second variant of the puzzle. We start with some
abbreviations: Di is going to abbreviate ‘The prize is behind Door
i’; B will be an abbreviation for ‘Monty Hall opens door 3’. We
make the initial assumption that there is an equal probability that
the prize is between each of the three doors. Hence

P (D1) = P (D2) = P (D3) = 1/3.
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The second assumption is that when she has a choice, Monty Hall
opens at random one of the two doors. In our particular situation
in which C chose door 1, Monty Hall opens at random door 2 or
door 3. Hence P (B) = 1/2.

The other probabilities are calculated as follows.

• When D1, Monty Hall is free to open door 2 or door 3:
P (B/D1) = 1/2,

• When D2, Monty Hall has to open door 3: P (B/D2) = 1

• When D3, Monty Hall has to open door 2: P (B/D3) = 0.

In order to solve the puzzle, we have to calculate three conditional
probabilities:

a) P (D1/B): the probability that the prize is behind door
1, given that Monty Hall opened door 3

b) P (D2/B): the probability that the prize is behind door
2, given that Monty Hall opened door 3

c) P (D3/B): the probability that the prize is behind door
3, given that Monty Hall opened door 3.

Using Bayes’ theorem

P (A/B) = (P (B/A) × P (A))/(P (B))

we obtain

P (D1/B) =
P (B/D1) × P (D1)

P (B)
= 1/3

P (D2/B) =
P (B/D2) × P (D2)

P (B)
= 2/3

P (D3/B) =
P (B/D3) × P (D3)

P (B)
= 0

Thus the answer to the initial question is: Yes, C should switch
to door 2.
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3 Conditional probabilities: trees
In order to facilitate comparison, we shall present the same solu-
tion given above using trees. (This is also the solution in Grinstead
and Snell 1998.) The tree will consist of 12 branches which corre-
sponds extensionally to all the possible choices of Monty Hall and
the Contestant. Each maximal branch has the form (x, y, z), where:

• x stands for the door with the prize,

• y stands for the door chosen be C, and

• z stands for the door opened by Monty Hall.

In addition we have the following restrictions:

• If x = y, then z takes two possible values; and

• If x ̸= y, then z can take only one value.

Thus the sequence (1, 2, 3) represents the history:

1. MH hides the prize behind door 1; C chooses door 1; MH
opens door 3.

It is customary in this setting to represent events as sets of branches
of the tree. For instance, the event C1 of C’s choosing door 1 cor-
responds to

C1 = {(1, 1, 2), (1, 1, 3), (2, 1, 3), (3, 1, 2)},

the event B of Monty Hall’s opening door 3 corresponds to

B = {(1, 1, 3), (1, 2, 3), (2, 1, 3)},

and the event C1∩B of C’s choosing door 1 and Monty Hall opening
door 3 corresponds to

C1 ∩B = {(2, 1, 3), (1, 1, 3)}.

Next, we endow the tree with a probability structure. First, we
make the same assumptions as earlier:
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• The events of the car being hidden behind door 1, door 2, and
door 3 are equiprobable

• The events of C’s choosing door 1, door 2, and door 3 are
equiprobable.

• Whenever Monty Hall has a choice to open one of two doors,
she chooses at random; and when she can open only one door,
the probability is 1.

We can now calculate the probabilities of the events which interest
us.

• The probability of the event C1 ∩B = {(2, 1, 3), (1, 1, 3)} :

P ({(2, 1, 3), (1, 1, 3)}) =

P (2, 1, 3) + P (1, 1, 3) =

(1/3 × 1/3 × 1) + (1/3 × 1/3 × 1/2) = 1/6

• The probability of the event D1 ∩ C1 ∩B = {(1, 1, 3)}:

P (D1 ∩ C1 ∩B) = 1/3 × 1/3 × 1/2 = 1/18 = 1/18

• The probability of the event D2 ∩ C1 ∩B = {(2, 1, 3)}:

P (D2 ∩ C1 ∩B) = 1/3 × 1/3 × 1 = 1/9 = 1/9

Finally, we apply Bayes’ law to compute the probability that the
car is behind door 1 given that C chose door 1and Monty Hall opend
door 3, P (D1/C1 ∩ B), and the probability that the car is behind
door 2 given that C chose door 1and Monty Hall opend door 3,
P (D2/C1 ∩B) . We have

P (D1/C1 ∩B) =

P (D1 ∩ C1 ∩B)/P (C1 ∩B) = 1/18/1/6 = 1/3

and

P (D2/C1 ∩B) =

P (D2 ∩ C1 ∩B)/P (C1 ∩B) = 1/9/1/6 = 2/3.

We have obtained the same solution that above.
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4 Dynamic (Update) logic
4.1 Product updates
We consider the formulation to Monty Hall in which C chooses door
1. This carves out a subtree from the big tree above which consists
of four maximal branches:

O1 = (1, 1, 2)
O2 = (1, 1, 3)
O3 = (2, 1, 3)
O4 = (3, 1, 2)

In update logic this tree is seen as generated in three stages.

1. First MH put the prize behind one of the three doors. This
generates an epistemic model M1 which corresponds to the
first layer in the tree.

2. M1 is then updated with C ′s action a1: C chooses door 1.
The result is the product model M2 which corresponds to the
second layer.

3. Finally MH (publicly) opens some door. This updates M2

with two possible actions, a2(= she opens door 2), and a3(=
she opens door 3). The result is the product model M3which
corresponds to the third layer of the tree.

Each action is associated with a set of preconditions which specify
in which circumstances (possible worlds) it may be performed. C’s
and Monty Hall’s actions are governed by the following principles
which determine their preconditions:

a) C may choose any of the three doors

b) Monty Hall can open only a door thatC did not choose,
and where the car is not hidden.

Now some of the details.
The epistemic model M1 has the form

M1 = (W1, R
1
C , R

1
MH)

where
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• W1 = {w1, w2, w3}, (w1 represents the world where the car is
behind door 1, etc)

• R1
MH = {(w,w) : w ∈ W1} (Monty Hall’s actions are accessi-

ble to herself)

• RC = W1×W1 (Monty Hall’s actions are not accessible to the
contestant C).

At stage (2), M1 is updated with the action model A1 = (V1, Q
1
C ,

Q1
MH), where V1 = {a1}. Given that a1is a public action, both

accessibility relations Q1
C and Q1

MH are V1×V1. From (a) we know
that Pre(a1) = W1. Hence

M2 = M1 ×A1 = (W2, R
2
C , R

2
MH)

where

• W2 = W1 × V1.

• R2
C = W2×W2 (all the worlds in W2 remain indistinguishable

to C)

• R2
MH = {(w, a1), (w, a1) : w ∈ W1} (Monty Hall knows ex-

actly where she is).

Let us abbreviate the possible worlds in W2 by:

v1 = (w1, a1)
v2 = (w2, a1)
v3 = (w3, a1)

Finally, the product model M2 is updated with the action model

A2 = (V2, Q
2
C , Q

2
MH)

where

• V2 = {a2, a3}, (a2= Monty Hall opens door 2, etc).

• Q2
C = Q2

MH = {(a2, a2), (a3, a3)}.
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From (b) we know that Pre(a2) = {v1,v3} and Pre(a3) = {v1, v2}.
The result of the update is the product model

M3 = M2 ×A2 = (W3, R
3
C , R

3
MH)

where W3 = W2 × A2 and the accessibility relations R3
C and R3

MH

inherit the uncertainities from M2.
Let us abbreviate the possible worlds of W3 by:

x = (w1, a1, a2)
y = (w1, a1, a3)
z = (w2, a1, a3)
u = (w3, a1, a2)

In order to give a solution to the puzzle, we need to establish what
C knows at this stage, i.e. R3

C . Given that a2 and a3 are public
actions, C knows, after a2 is performed, that she could be either in
x or in u, i.e. R3

Cxu and R3
Cux (plus the corresponding reflexivity

conditions). And after a3 is performed, she knows she can be ei-
ther in y or in z, that is, R3

Cyz and R3
Czy (plus the corresponding

reflexivity conditions). Graphically:

w1 · · · · · · w2 · · · w3

↓ ↓ ↓
a1 · · · · · · a1 · · · a1

↙ ↘ ↓ ↓
a2 a3 · · · a3 a2
x y z u

4.2 Product updates with probabilities
Earlier on, we endowed trees with a probability structure. We now
do the same for product update models. I follow very closely van
Benthem (2003).

For epistemic models M , we consider, for each agent i, the equiv-
alence classes Di,s = {t : Rist}. Probability functions Pi,s are de-
fined over the probability space Di,s. For simplicity, we take these
functions to be uniform: all the worlds in the set Di,s are equiprob-
able. Following van Benthem, we simplify matters even more in
finite models and assume that the functions Pi,s assign probabilities
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Pi,s(w) to single worlds w. We can then use sums of these values
to assign probabilities to propositions, viewed as the set of worlds
where they are true. Then we can interpret Pi,s(φ) as assigning a
probabilistic value assigned to φ by the agent i in the possible world
s. In case this value is 1, this will correspond to the assertion Kiφ.

Next, we assign probabilities to actions in the universe of the
action models A. This is done relatively to a state s. The basic
notion is Pi,s(a): the probability that the agent i assigns to action
a in the world s. In our example we assume that all this has been
settled in some way or another, giving us agents’ probabilities for
worlds, and also for actions at worlds.

Finally we are ready to handle the puzzle. We are interested in
the last update. Given that Monty Hall’s action of opening a door
is a public one, reference to the agent i does not matter, and we
shall be concerned with probabilities functions of the form Ps(a).
We are interested in computing the relevant probabilities in

M3 = M2 ×A2 = (W3, R
3
C , R

3
MH).

More specifically, we are interested in the probabilities the agents
assign to the possible worlds in W3. As mentioned, these worlds
have the form v = (w1, a1), etc.

The central notion is Pc,(v,a)(v
′, b): the probability agent C as-

signs to the world (v′, b) in the world (v, a). In order to compute it,
we need to know the probability Pi,v(v′) that C assigns to the world
v′ in v, and the probability Pv′(b) assigned to the action b in the
world v′. But this is not enough, for the action b could have been
performed from any other world u indistinguishable (for agent C)
from v. So we also need the probabilities PC,v(u) for every u such
that RCvu together with the probabilities Pu(b). Then we use the
formula:

PC,(v,a)(v
′, b) =

PC,v(v′) × Pv′(b)∑
RCvu PC,v(u) × Pu(b)

Thus in our case we need to compute the value of

PC,v1(v1) = Pc,(w1,a1)(w1, a1)
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and that of
PC,v1(v2) = Pc,(w1,a1)(w2, a1).

We have

Pc,(w1,a1)(w1, a1) =
PC,w1

(w1)×Pw1
(a1)

PC,w1(w1)×Pw1(a1)+PC,w1(w2)×Pw2(a1) + PC,w1(w3)×Pw3(a1)
=

1

3
× 1

1

3
× 1 +

1

3
× 1 +

1

3
× 1

=
1

3
.

A similar computation yields

PC,v1(v2) = PC,(w1,a1)(w2, a1) =
1

3

Finally we are interested in

PC,x(y) = PC,(v1,a3)(v1, a3)

and
Pc,x(z) = Pc,(v1,a3)(v2, a3).

The first one represents the probability that C assigns in the (actual)
world (v1, a3) (the prize is behind door 1, C chooses door 1, Monty
Hall opens door 3) to the very same world; the second one represents
the probability that C assigns in the world (v1, a3) to the world
(v2, a3) which is identical to the actual world, except for the prize
being behind door 2.

We have

PC,(v1,a3)(v1, a3) =
PC,v1(v1) × Pv1(a3)

PC,v1(v1) × Pv1(a3) + PC,v1(v2) × Pv2(a3)
=

1

3
× 1

2
1

3
× 1

2
+

1

3
× 1

=
1

3
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Similarly

PC,(v1,a3)(v2, a3) =
PC,v1(v2) × Pv2(a3)

PC,v1(v1) × Pv1(a3) + PC,v1(v2) × Pv2(a3)
=

1

3
× 1

1

3
× 1

2
+

1

3
× 1

=
2

3

We recover the same result as earlier: it is rational for C to switch
to door 2.

5 Game-theoretical solutions
We consider the second formulation of the puzzle. To my knowledge,
there is no full-fledged game-theoretical solution in the literature.

I will first describe a solution, due to Isaac (1995), which comes
close to a game-theoretical one.

5.1 Isaac’ solution
Isaac represents the puzzle as consisting abstractly of the succession
of three actions:

a) C chooses one of the three doors

b) Monty Hall opens one of the two remaining doors, the
one without a prize

c) C switches doors

followed by an a label W or L which shows whether C won or lost.
The door where the prize is hidden is denoted by 1, the other two
by 2 and 3.

Thus the sequence (1, 2, 3, L) should be read:

C chooses the door where the prize is; MH opens the
other door 2; C switches to door 3; C looses.

Notice that the stage in the puzzle which indicates where Monty
Hall has hidden the prize, is not explicitly represented. On the
other side, there is one an extra-layer which represents C’s action



Dynamic logic versus GTS: A case study 211

of switching doors and another extra-layer which specifies who lost
or won. Notice also that the labels 1, 2 and 3 are not rigid, they do
not designate any concrete door.

When we think of C’s action of switching doors, 4 possible situ-
ations can occur:

• (C chose the door where the prize is; Monty Hall opens the
other door, 2; C switches doors; C looses): (1, 2, 3, L)

• Identical with the previous one, except that the last two
choices are reversed: (1, 3, 2, L)

• (C chose one of the doors without the prize, say 2; Monty Hall
opens the other door without the prize, 3; C switches to 1; C
wins): (2, 3, 1,W )

• Identical with the previous one, except that the first two
choices are reversed: (3, 2, 1,W )

We now have to endow the space

{(1, 2, 3, L), (1, 3, 2, L), (2, 3, 1,W ), (3, 2, 1,W )}

with probabilities.
It is reasonable to assume that the probability that C chose the

door where the prize is equals the probability that he chooses the
door 2 (without the prize), and the probability that he chooses door
3. The event corresponds to

{(1, 2, 3, L), (1, 3, 2, L)}

and the last two ones to {(2, 3, 1,W )} and {(3, 2, 1,W )}. So we
assume that

P ({(1, 2, 3, L), (1, 3, 2, L)}) = 1/3

P ({(2, 3, 1,W )}) = 1/3

P ({3, 2, 1,W )} = 1/3

We do not know the probabilities P (1, 2, 3, L) and P (1, 3, 2, L) but
we shall not need them. What we are interested in is the event ‘C
wins’ which corresponds to

{(2, 3, 1,W ), (3, 2, 1,W )}
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and the event ‘C looses’ which actually turns out to be the same
event as ‘C chose the door where the prize is’. Obviously

P ({(2, 3, 1,W ), (3, 2, 1,W )}) =

P ({(2, 3, 1,W )}) + P ({(3, 2, 1,W )}) = 2/3

We now have an answer to our initial puzzle. Using the ‘switching’
strategies C will win with probability 2/3 and loose with probability
1/3.

A similar argument will represent the ‘stick to the same door’
strategy by

{(1, 2, 1,W ), (1, 3, 1,W ), (2, 3, 2, L), (3, 2, 3, L)}

By an argument similar to the previous one, we see that the
probability that C wins (= {(1, 2, 1,W ), (1, 3, 1,W )})) is 1/3 whereas
the probability that C looses is 2/3.

Isaac’s conclusion is: switching doors gives C a probability of 2/3
to win the car, whereas sticking to his initial choice will give him a
probability of 1/3 to win the car.

Notice that:

• The solution is general, it concerns the first variant of Monty
Hall puzzle.

• The solution does not appeal to conditional probabilities.

• There is a layer in the representation which makes explicit C’s
second guess.

We shall incorporate these elements in our game-theoretical solu-
tion.

5.2 A game-theoretical solution
We shall formulate Monty Hall as an extensive, finite win-loss game
of imperfect information played by two players: the contestant C
tries to identify the door with the prize whereas his opponent Monty
Hall tries to deceive him. The game tree will extend the tree we in-
troduced in connection with the conditional probabilities approach.
Maximal branches will have now the form (x, y, z, t) with an extra
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term t to stand for the final choice of C. In this setting the maximal
sequence (1, 1, 2, 1) represents the possible play of the game:

MH hides the prize behind door 1; C chooses door 1;
MH opens door 2; C chooses door 1.

This play is a win for C if the last element of the sequence is the
same as the first: in his second choice C chooses the door where the
prize is. Note that in each play (x, y, z, t), x and z are choices made
by Monty Hall, whereas y and t are choices made by C.

To specify the information of the players, notice that

C1 Any histories (x) and (x′) are equivalent (indistinguish-
able) for player C

C2 Any histories (x, y, z) and (x′, y′, z′) such that y = y′

and z = z′ are equivalent for player C.

(C1) tells us that C does not know the door where the prize is,
when making his first choice. (C2) expresses the fact that C does
not know the door where the prize is, when he makes his second
choice.

Next we specify the strategies of the players.
We shall take the strategies of C to consist of pairs (fy, ft) of

functions: fywill give her a choice for y and ft achoice for t. Given
the requirement (C1), fy will have to be a constant function, i.e.
fy(x) = fy(x′) for any doors x, x′ where Monty Hall hides the price.
This amounts to fy being an individual i (a door). Similar comments
apply to ft : given the requirement (C2), we can assume that ft is
a function h of two arguments, y and z. All in all we shall take C’s
strategies to consist of pairs (i, hi), where i stands for a door and
hi for a function of two arguments (y, z).

A strategy (i, hi) is winning if C wins every play where she follows
it. The notion of ‘following a strategy’ is standard in game theory
and we shall not give a formal definition.

We focuse on two kinds of strategies for player C (all the others
are weakly dominated by them).

• The ‘stay’ strategy, SStay
C : choose a door, then stick to the

initial choice no matter what Monty Hall does.
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It is encoded by three strategy pairs, i.e.,

SStay
C = {(i, hi) : i = 1, 2, 3},

where hi(y, z) = i, for every y and z.
Each such strategy (i, hi) is followed in every play

(x, i, z, hi(i, z))

for any x and z. As mentioned earlier, it is winning whenever C’s
initial guess is correct, i.e., i = x = hi(y, z), and loosing otherwise.
Obviously none of the ‘stay’ strategies is winning simpliciter.

• The ‘switch’ strategy, SSwitch
C : choose a door, and then after

Monty Hall opens a door, switch doors.

This strategy is encoded by three strategy pairs

SSwitch
C = {(1, f1), (2, f2), (3, f3)}

where
f1(1, 2) = 3 f1(1, 3) = 2
f2(2, 3) = 1 f2(2, 1) = 3
f3(3, 2) = 1 f3(3, 1) = 2

Each of the three strategies wins in two cases: when the initial
choice is incorrect, i ̸= x; and it looses in one case, when the initial
choice is correct.

Monty Hall’s strategies consist of pairs (j, g): j is a value for x;
and the function g associates to each argument (x, y) a value for z.

The only strategy available for Monty Hall (given the rules of the
game) is: ‘hide the prize behind a door, and after C chooses a door,
open any other door’. Thus her set of strategies, SMH , contains the
following strategy pairs:

(1, g1) : g1(1, 1) = 2 g1(1, 2) = 3 g1(1, 3) = 2

(1, g
′
1) : g

′
1(1, 1) = 3 g

′
1(1, 2) = 3 g

′
1(1, 3) = 2

(2, g2) : g2(2, 1) = 3 g2(2, 2) = 1 g2(2, 3) = 1

(2, g
′
2) : g

′
2(2, 1) = 3 g

′
2(2, 2) = 3 g

′
2(2, 3) = 1

(3, g3) : g3(3, 1) = 2 g3(3, 2) = 1 g3(3, 3) = 1

(3, g
′
3) : g

′
3(3, 1) = 2 g

′
3(3, 2) = 1 g

′
3(3, 3) = 2
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Each of the strategy pair (j, gj) is followed in every play of the
form (j, y, gj(j, y), t), for any y and t. It is winning whenever j ̸= t
and loosing otherwise. None of these strategies is winning sim-
pliciter.

Monty Hall formulated as an extensive game of imperfect informa-
tion is indeterminate: neither Monty Hall nor Eloise has a winning
strategy.

To overcome indeterminacy we move to mixed strategies. Before,
we need few definitions and results from classical game theory.

5.2.1 Strategic games: equilibria in pure strategies
A finite two player strategic game has the form Γ = (SI , SII , uI , uII)
where:

1. SI is the set of strategies of the first player

2. SII is the set of strategies of the second player

3. uI and uII are the payoff functions of the players. That is,
for every σ ∈ SI and τ ∈ SII , uI(σ, τ) gives player I a payoff,
which is a real number; and the same for uII .

Fix a 2 player strategic game Γ = (SI , SII , uI , uII). When σ∗ ∈ SI
and τ∗ ∈ SII , the pair (σ∗, τ∗) is an equilibrium in Γ iff the following
two conditions are jointly satisfied:

(i) uI(σ∗, τ∗) ≥ uI(σ, τ∗) for every strategy σ in SI . In other words

uI(σ∗, τ∗) = maxσuI(σ, τ∗)

(ii) uII(σ∗, τ∗) ≥ uII(σ∗, τ) for every strategy τ in SII . In other
words

uII(σ∗, τ∗) = maxτ uII(σ∗, τ)

When SI and SII are finite, there is a simple algorithm for identi-
fying the equilibria:

• In each column, circle the maximum payoffs of player I (if the
maximum payoff occurs more than once, circle every occur-
rence)
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• In each row, circle the maximum payoffs of player II

• A pair of strategies (σ∗, τ∗) is an equilibrium in Γ iff both
uI(σ∗, τ∗) and uII(σ∗, τ∗) are circled.

It is straightforward to transform the extensive Monty Hall game
into a finite 2 player win-lose strategic game.

We shall take the two players to be Monty Hall and C.
We have already specified the set of strategies of Monty Hall,

SMH , and the set of strategies of the Contestant, SC . Notice that
whenever Monty Hall follows one of her strategies in SMH , and C
follows one of his strategies in SC , a play of the extensive game is
generated which is a win for either one of the players. For instance,
when Monty Hall follows (3, g3) and C follows (1, h1), the result is
the play (3, 1, 2, 1) which is a win for Monty Hall. This will fix the
payoff functions uMH and uC . Here is the matrix representation of
the strategic Monty Hall game:

(1, g1) (1, g
′
1) (2, g2) (2, g

′
2) (3, g3) (3, g

′
3)

(1, h1) (1, 0) (1, 0) (0, 1) (0, 1) (0, 1) (0, 1)

(2, h2) (0, 1) (0, 1) (1, 0) (1, 0) (0, 1) (0, 1)

(3, h3) (0, 1) (0, 1) (0, 1) (0, 1) (1, 0) (1, 0)

(1, f1) (0, 1) (0, 1) (1, 0) (1, 0) (1, 0) (1, 0)

(2, f2) (1, 0) (1, 0) (0, 1) (0, 1) (1, 0) (1, 0)

(3, f3) (1, 0) (1, 0) (1, 0) (1, 0) (0, 1) (0, 1)

The rows represent the strategies of the Contestant and the colums
those of Monty Hall. The reader may convince himself, by applying
the algorithm described above, that there is no equilibrium in the
game. This is, obviously, nothing else than the counterpart of the
indeterminacy of the extensive game of imperfect information.

5.2.2 Strategic games: mixed strategy equilibria
Let Γ = (SI , SII , uI , uII) be a two player finite strategic game.

• A mixed strategy ν for player p is a probability distribu-
tion over Sp, that is, a function ν : Sp → [0, 1] such that∑

τ∈Sp
ν(τ) = 1.
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• ν is uniform over S′
i ⊆ Si if it assigns equal probability to all

strategies in S′
i and zero probability to all the strategies in

Si − S′
i.

Let ∆(Sp) be the set of mixed strategies over Sp. If µ ∈ ∆(SI) and
ν ∈ ∆(SII), the expected utility for player p is given by:

Up(µ, ν) =
∑
σ∈SI

∑
τ∈SII

µ(σ)ν(τ)up(σ, τ).

We can identify a pure strategy σ ∈ SI with a ‘degenerate’ mixed
strategy which assigns to σ probability 1 and 0 to all the other
strategies in SI . That is, when σ ∈ SI and ν ∈ ∆(SII), we let

Up(σ, ν) =
∑
τ∈SII

ν(τ)up(σ, τ).

Similarly, when τ ∈ SII and µ ∈ ∆(SI), we let

Up(µ, τ) =
∑
σ∈SI

µ(σ)up(σ, τ).

Let Γ = (SI , SII , uI , uII) be a two player finite strategic game which
is also a win-lose game (the only payoffs are 0 and 1). For µ∗ ∈
∆(SI) and ν∗ ∈ ∆(SII), the definition of (µ∗, ν∗) being a mixed
strategy equilibrium in Γ is completely analogue to the earlier one.

The following results are well known.

Theorem 1 (von Neuman’s Minimax Theorem). Every finite,
two-person, win-lose game has an equilibrium in mixed strategies.

Corollary 1. Let (µ, ν) and (µ′, ν ′) be two mixed strategy equlib-
ria in a win-lose game. Then Up(µ, ν) = Up(µ

′, ν ′).

The above results tell us that for two-player finite win-lose games
an equilibrium always exists (von Neumann’s theorem), and in ad-
dition, any two mixed strategy equilibria deliver the same expected
utility. We shall take the value of the game to be the expected
utility delivered by any of the mixed strategy equilibrium in the
game.

We give a simple algorithm for identifying mixed strategy equi-
libria:
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Proposition 1. In a finite, two player strategic game, the pair
(µ∗, ν∗) is an equilibrium if and only if the following conditions hold:

1. UI(µ∗, ν∗) = UI(σ, ν∗) for every σ ∈ SI in the support of µ∗

2. UII(µ∗, ν∗) = UII(µ∗, τ) for every τ ∈ SII in the support of ν∗

3. UI(µ∗, ν∗) ≥ UI(σ, ν∗) for every σ ∈ SI outside the support of µ∗

4. UII(µ∗, ν∗) ≥ UII(µ∗, τ) for every τ ∈ SII outside the support of
ν∗.

Here are few results from classical game theory which help us
to reduce a game to a smaller one, after which we can apply the
Proposition above.

Definition 1. Let Γ = (SI , SII , uI , uII) be a finite two player
strategic, win-lose game. For σ, σ′ ∈ SI , we say that σ′ weakly
dominates σ if the following two conditions hold:

(i) For every τ ∈ SI :
uI(σ′, τ) ≥ uI(σ, τ)

(ii) For some τ ∈ SII :

uI(σ′, τ) > uI(σ, τ).

A similar notion is defined for Abelard.
The following result enables us to eliminate weakly dominated

strategies.

Proposition 2. Let Γ = (SI , SII , uI , uII) be a finite 2 player,
win-lose game strategic game. Then Γ has an equilibrium in mixed
strategies (µI , µII) such that for each player p none of the strategies
in the support of σp is weakly dominated in Γ.

A proof of this fact may be found in Mann et al (Proposition
7.22).

Definition 2. Let Γ = (SI , SII , uI , uII) be a finite two player,
win-lose strategic game. For σ, σ′ ∈ SI , we say that σ′ is payoff
equivalent to σ if for every τ ∈ SII : uI(σ′, τ) = u∃I(σ, τ).
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A similar notion is defined for Abelard. The next Proposition
allows us to reduce the game to a smaller one by eliminating all the
payoff equivalent strategies, except one.

Proposition 3. Let Γ = (SI , SII , uI , uII) be a finite two player,
win-lose strategic game. Then Γ has an equilibrium in mixed strate-
gies (µI , µII) such that for each player p there are no strategies in
the support of σp which are payoff equivalent.

A proof of this fact may be found in Mann et al (Proposition
7.23).

We now return to the strategic Monty Hall game. We notice that
each strategy (i, hi) is weakly dominated by some strategy (j, fj).
For instance (1, h1) is weakly dominated by (2, f2). Hence by the
second proposition above we know that that game has the same
value as the game

(1, g1) (1, g
′
1) (2, g2) (2, g

′
2) (3, g3) (3, g

′
3)

(1, f1) (0, 1) (0, 1) (1, 0) (1, 0) (1, 0) (1, 0)

(2, f2) (1, 0) (1, 0) (0, 1) (0, 1) (1, 0) (1, 0)

(3, f3) (1, 0) (1, 0) (1, 0) (1, 0) (0, 1) (0, 1)

The next observation is that the strategies (i, g
′
i) and (i, gi) are

payoff equivalent for Abelard. Hence by the last proposition we
know that the value of the game is the same as that of the game:

(1, g1) (2, g2) (3, g3)

(1, f1) (0, 1) (1, 0) (1, 0)

(2, f2) (1, 0) (0, 1) (1, 0)

(3, f3) (1, 0) (1, 0) (0, 1)

Let µ be the uniform probability distribution, i.e. µ(1, fi) =
1

3
and

ν the uniform probability distribution ν(j, gj) =
1

3
. It is straight-

forward to check, using the first proposition above, that (µ, ν) is an
equilibrium. The expected utility of player C (i.e., the value of the
game) for this equilibrium is 2/3.
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Notice that C’s strategy µ assigns an equal probability to each
of the pure strategies which implement the ‘switch’ strategy. The
important thing is not that it returns to player C an expected util-
ity of 2/3 but rather that it weakly dominates the ‘stay’ strategy.
If we want to compute the expected utility returned to C by the
latter strategy, we should return to the bigger game where both the
‘switch’ and the ‘stay’ strategies are listed. We know that the value
of the game described there is the same as that delivered by the
equilibrium pair (µ, ν). In that game, let ν∗ be the same as ν, and

let µ∗ be the probability distribution such that: µ∗(i, fi) =
1

3
and

µ∗(i, hi) = 0. The pair (µ∗, ν∗) is an equilibrium in this larger game.
We compute UC((i, hi), ν

∗):

UC((i, hi), ν
∗) =

∑
t∈SMH

ν∗(τ)uC((i, hi), t) = 2 × 1

6
× 1 =

1

3

In other words, the ‘stay’ strategy returns an expected utility of
1

3
.

We have obtained the same result as in Isaac’s approach.

6 IF logic
IF logic (Independence-Friendly logic) is an extension of first-order
logic which contains quantifiers and connectives of the form

(∃x/W ), (∀x/W ), (∨/W ), (∧/W )

where the interpretation of e.g. (∃x/W ) is: ‘the choice of x is
independent of the values of the variables in W ’. When W = ∅, we
recover the standard quantifiers. For illustration, the sentence

• For every x and x′, there exists a y depending only on x and
a y′ depending only on x′ such that Q(x, x′, y, y′) is true

is rendered in the new symbolism by

∀x∀x′(∃y/{x′})(∃y′/{x, y})Q(x, x′, y, y′).

IF sentences are interpreted by semantical games of imperfect
information (Mann et al). However, we prefer to give an interpre-
tation in terms of Skolem functions and Kreisel counterexamples.
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The skolemized form or skolemization of φ, with free variables in U,
SkU (φ), is given by the following clauses:

1. SkU (ψ) = ψ, for ψ a literal

2. SkU (ψ ◦ θ) = SkU (ψ) ◦ SkU (θ), for ◦ ∈ {∨,∧}

3. SkU ((∀x/W )ψ) = ∀xSkU∪{x}(ψ)

4. SkU ((∃xW )ψ) = Sub(SkU∪{x}(ψ), x, f(y1, ..., yn))

where y1, ..., yn are all the variables in U−W and f is a new function
symbol of appropriate arity. We abbreviate Sk∅(φ) by Sk(φ).

Skolemizing makes explicit the dependencies of variables. We
obtain an alternative definition of truth. For every IF formula φ,
model M, and assignment s which includes the free variables of φ
we let: M, s �+

Sk φ if and only if there exist functions g1, ..., gn of
appropriate arity in M to be the interpretations of the new function
symbols in SkU (φ) such that

M, g1, ..., gn, s � SkU (φ)

where U is the domain of s. The functions g1, ..., gn are called skolem
functions.

We now define the dual procedure of Skolemization. The Kreisel
form KrU (φ) of the IF formula φ in negation normal form with free
variables in U is defined by:

1. KrU (ψ) = ¬ψ, for ψ a literal

2. KrU (ψ ∨ θ) = KrU (ψ) ∧KrU (θ),

3. KrU (ψ ∧ θ) = KrU (ψ) ∨KrU (θ)

4. KrU ((∃x/W )ψ) = ∀xKrU∪{x}(ψ)

5. KrU ((∀x/W )ψ) =Sub(KrU∪{x}(ψ), x, g(y1, ..., ym))

where y1, ..., ym are all the variables in U −W .
We now obtain an alternative definition of falsity. For every IF

formula φ, model M, and assignment s which includes the free vari-
ables of φ we let: M, s �−

Sk φ if and only if there exist h1, ..., hm in
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M to be the interpretations of the new function symbols in Kr(φ)
such that

M, h1, ..., hm, s � KrU (φ)

where U is the domain of s. We call h1, ..., hm Kreisel counterex-
amples.

The Monty Hall game is expressed in IF logic by the sentence

∀x(∃y/{x})∀z[x ̸= z ∧ y ̸= z → (∃t/{x})x = t]

or equivalently by the sentence φMH

∀x(∃y/{x})∀z[x = z ∨ y = z ∨ (∃t/{x})x = t].

We can think of the Contestant, C, as the existential quantifier
and disjunction, and of Monty Hall as the universal quantifier. We
do not want to push the formalization too far. The intuitive reading
of our sentence should be clear: For all Door x where the prize is
hidden by Monty Hall, for every door y guessed by C, for every door
z opened by Monty Hall, if z is distinct from x and from y, then
C has one more choice to identify the door where the prize is. The
Skolemized form of φMH is

∀x∀z[x = z ∨ c = z ∨ x = f(c, z)]

and its Kreisel form is

∀y[d = g(d, y) ∨ y = g(d, y) ∨ ∀t(g(d, y) = t)]

where c, d, f and g are new function symbols. The reader should
convince herself that on models M = {1, 2, 3} (corresponding to
the three doors) the possible values of (c, f) correspond to the set
of strategies of the Contestant; and the possible values of (d, g)
correspond to the set of strategies of Monty Hall.

Then we can identify the value of φMH in the model M = {1, 2, 3}
to be 2/3.
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7 Conclusion

The updated account gave the same solution to the Monty Hall
problem as the classical account based on conditional probabilities.
Both approaches conditionalize, the former on actions, the second
on propositions and yield two posterior probabilities: P (D1/B) =
1/3 and P (D2/B) = 2/3 in the latter; and Pc,(v1,a3)(v1, a3) and
Pc,(v1,a3)(v2, a3) in the former. I take both approaches to provide a
solution to a particular, local, decision theoretical problem, that of
explaining why a particular action is more rational than another in
certain particular circumstances.

Yet there are important differences between them. Van Benthem
points out that the conditional probabilities account describes what
would be the probability that the car is behind door 1 if B were to
happen (alternatively, if action a3 were to be performed). On the
other side, he takes P(w1,a1)(φ) (reference to the agent C has been
erased) to describe rather the probability of φ in the state (w1, a3)
reached now after action a3 has been performed. ‘The [latter] takes
place once arrived at one’s vacation destination, the [former] is like
reading a travel folder and musing about tropical islands. The two
points are related, but not identical’.
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