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abstract. Gödelian sentences are self-referential first-order
sentences in the language of arithmetics. Perhaps the most cele-
brated one is the sentence which asserts its own unprovability. It is
well known that this sentence is neither provable nor refutable in
PA (Peano Arithmetics). Some logicians and philosophers have
complained that such a sentence is difficult to grasp given its
‘meta-theoretical’ content and they started to look for undecid-
able arithmetical statements which have a combinatorial content.
One such sentence is a variant of Ramsey’s sentence: the Paris-
Harrington theorem asserts its undecidability. In the present pa-
per I shall argue that such a sentence is not first-order expressible
and thereby it does not provide the desired example of a combi-
natorial, undecidable arithmetical sentence. Instead I shall argue
that it is expressible in Independence-friendly (IF) logic.
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Mathematicians, logicians and philosophers have been puzzled
by Gödel’s first incompleteness theorem ever since it was published.
What kinds of limitations on our logic does it reveal? If not all
arithmetical truths are provable from Peano axioms by means of
first-order logic, what additional resources should we resort to in
arithmetic and in mathematical reasoning in general?

One way of trying to answer such questions seems to be to see
what the Gödelian true but unprovable sentences are like and how
their truth can be established. Gödel’s own proof is constructive,
but the resulting true but unprovable sentences did not turn out to
be interesting mathematically and did not suggest any systematic
ways of proving stronger results. It seemed therefore highly inter-
esting when Paris and Harrington (1977) [6] discovered a simple
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modification of the Finite Ramsey Theorem in combinatorial math-
ematics that could be proved by a straightforward non-finitary com-
binatorial argument but was not possible to prove by means of finite
combinatorial methods. This result (it will be called here modified
finite Ramsey theorem or MFRT) has been taken to suggest that
logical arguments should be supplemented, if not replaced, in the
foundations of mathematics by combinatorial reasoning.

An emphasis on combinatorial reasoning may very well be well-
placed. But if so, this recommendation is not by itself a way out
of the Gödelian conundrum. For one thing, the Paris-Harrington
modification of FRT is not itself the kind of sentence whose existence
Gödel proved. The reason is that it is not a sentence that can be
formulated in the kind of language that is used in Peano arithmetic
and presupposed in Gödel’s theorem, that is, in the language of
first-order arithmetic. The first purpose of this note is to show its
logical status. Once the logic of the modified finite Ramsey theorem
is cleared up, it can be seen that it illustrates certain remarkable
facts about computability.

The unmodified FRT can be formulated as follows (cf. [8, pp. 363–
364]):

(1) For all k, l, m, there exists n so large that: IfX = {1, 2, . . . , n}
and if [X]k = C1∪C2∪· · ·∪Cl, then there exists Y ⊆ X such
that [Y ] ≥ m and [Y ]k ⊆ Ci for some i ≤ l.

Here X and Y are sets of natural numbers and i, j, k, l, m, n are
natural numbers. The cardinality of any X is [X]. Also let N be
the set of all natural numbers. For any subset Z of N , [Z]k is the
set of all (unordered) subsets of Z with k members.

For the purpose of this paper, it suffices to consider the special
case known as the party problem. In it a symmetric relation R —
any given symmetric relation — is assumed to be defined on N .
Also, l = 2, k = 2. C1 is the set of all the pairs ⟨x, y⟩ of numbers
such that R(x, y) and C2 of the pairs such that ∼ R(x, y). If we
think of R(x, y) as the relation of knowing each other, then the
resulting ‘party problem’ illustration asks whether you can assume
that there is a uniform set Y of m guests simply by inviting large
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enough a number n of guests. The unmodified FRT answers this
question affirmatively.

In the MFRT, an extra requirement is imposed on Y , viz. that
Y ‘large’ in the sense that

(2) [Y ] > minx(x ∈ Y ).

What is the logical form of this MFRT? The obvious prima facie
answer is, assuming a fixed R,

(3) (∀m)(∃n)(∀X)((X = {1, 2, . . . , n}) ⊃ (∃Y )(([Y ] ≥ m) ∧ (Y ⊆
X) ∧ (([Y ]2 ⊆ C1) ∨ ([Y ]2 ⊆ C2)) ∧ ([Y ] > minx(X ∈ Y ))))).

On the face of things, this is not a Gödel sentence. Gödel’s in-
completeness theorem deals with first-order arithmetic, whereas (3)
contains two second-order quantifiers. However, they range over fi-
nite subsets of N . By means of the technique Gödel used, we can
express such existential quantifiers in terms of first-order quantifiers.
This takes care of (∃Y ), and it is easily seen that we can similarly
deal with (∀X). This is undoubtedly the basis for thinking that the
MFRT is a Gödel sentence.

But this is not the full story. For the MFRT is supposed to hold
for any partition C1, C2, . . . ergo in the case of the party problem
for any symmetric relation R. Hence there is in effect an additional
quantifier (∀R) in (3). What is more, this additional quantifier
matters, because of its relations of dependence and independence of
other quantifiers. One important relation is that (∃n) must be inde-
pendent of (∀R) in order for MFRT to be valid. This independence
is the main insight of this paper. This dependence is the crucial
fact here.

In order to prove the independence, assume that on the contrary
R does depend on n. Then given n we can define R in such a way
that there are no uniform subsets large enough in X. From the
unmodified FRT and its proof we can see that it takes a set of at
least superexponential function of m to express the size required,
i.e. the size at which it is necessary that there it has a uniform
subset of m numbers (See e.g. [8, p. 363]). Assume that such a
subset X of N of superexponential size is given.
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We can choose X as small as possible so that the cardinality of
the only uniform subset Y is precisely m, i.e. [Y ] = m. This only
requires choosing the relation R in a suitable way. Suppose now
that we rename (reorder) the set X = {1, 2, . . . , [X]}. The result is
structure of the same kind as before, but with a different definition of
R onX, in other words, a new value of R. Otherwise, the numbering
of the members of X does not enter into the MFRT. In particular,
we can re-order the set X in such a way that the members of the
uniform subset Y come last in the re-ordered X. It is important
that we are dealing with a re-numbering of n = [X] elements and
hence presuppose intuitively speaking knowing n. Since [X] is a
superexponential as a function of m, we have

(4) minx(x ∈ Y ) > ([X] −m) > m = [Y ]

But this violates the ‘largeness’ requirement (2). The counter-
assumption is hence impossible, and R must not depend on n.

But where does the argument leave the MFRT? We know that
it is valid. How is it to be expressed in the first place? We have
in to amplify (3) by bringing in the quantifier (∀R) explicitly. The
question is what its dependence and independence relations to the
other quantifiers in (3) are. Options include the following:

(5) (∀m)(∃n)(∀R)(−−−)

(6) (∀m)(∀R)(∃n/∀R)(−−−)

(7) (∀m)(∀R)(∃n)(−−−)

Each of these formulas gives rise to a semantical game. The ar-
gument just given shows in effect that each strategy of the vertex in
the game with (5) is defeated by a suitable strategy by the falsifier.
Hence (5) cannot be true and consequently cannot express MFRT.

Also, (7) is weaker than (6) and weaker than the intended force
of MFRT. Hence (6) shows the logical form of the theorem.

Accordingly, MFRT involves an irreducibly independent (IF)
quantifier. Hence it cannot be a formula of a traditional first-order
formula or equivalent to one. And since Gödel is using a received
first-order language, MFRT is not a Gödel sentence.
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The irreducibly IF character of MFRT has other interesting con-
sequences and it is related to important theoretical questions. They
are discussed in [2] and [3]. From (6) it is seen that n is a function of
m only, n = r(m). This function is not general recursive. If it were,
it would be definable in terms of a finite set of equations. This set
corresponds to a set of traditional first-order sentences. Derivations
from these in turn correspond to computations (see [2]). In the case
of f , the formula (6) can serve as one of these sentences. But it
cannot if f is to be general recursive, for (6) involves irreducibly IF
Skolem functions. Hence f cannot be general recursive.

Yet f is obviously computable by a mechanical process, for we
can simply by going through for a given m all the possible relations
R (different ‘colorings’) for n = m, m+ 1, m+ 2, . . . Hence MFRT
appears to be highly interesting even if it is not a Gödel sentence.
It is a counterexample to Church’s Thesis: in a pretheoretical sense
computable, but not general recursive nor therefore a Turing ma-
chine computable function.

This line of thought clearly needs fuller argument than what can
be given in general. The current research is not free of confusion,
and even mistakes, and needs systematic scrutiny (cf. [5]).

These questions are not examined in any detail in this paper,
however. Instead, we return briefly to the initial question raised in
this paper. It is not a good strategy in trying to understand Gödel’s
first incompleteness theorem to examine particular instances of true
but unprovable arithmetical sentences. What Gödel’s theorem says
is essentially that the set of true arithmetical sentences is not recur-
sively enumerable. The different axiomatizations are but different
methods of enumeration (see [4]). That some particular true arith-
metical sentence is not provable in some particular axiomatization
is hence informative only of why one particular attempted enumera-
tion fails, not about why every such enumeration fails, that is, what
Gödel’s incompleteness really means.
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