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abstract. This paper sketches two approaches to the co-
lor exclusion problem provided by model-theoretical and game-
theoretical semantics. The case study, modeling the experimen-
tally confirmed perception of ‘forbidden’ (e.g., reddish green and
bluish yellow) colors, is presented as neuropsychological evidence
for game-theoretical semantics.

Keywords: invariance criterion, permutation invariance, color ex-
clusion problem, binary colors, opponent-processing model, over-
defined games, non-strictly competitive games, payoff indepen-
dence

1 Invariance Criterion Revisited
Logical knowledge of reality is possible since logic deals with formal,
metaphysically unchanging features of reality. But what does it
mean exactly? How does our formal model of reality depend on
more or less sophisticated understanding of logicality?

According to Tarski’s model-theoretical approach, a concept is
logical if and only if ‘it is invariant under all possible one-one trans-
formations of the world onto itself’ [16, p. 149]2. Felix Klein’s fa-
mous Erlangen Program (1872) proposed the classification of various

1This study comprises research findings from the ‘Game-theoretical
foundations of pragmatics’ Project № 12-03-00528a carried out within The
Russian Foundation for Humanities Academic Fund Program.

2According to Tarski-Sher’s criterion, it is better to discuss ‘isomorphisms’
(or ‘bijections’) and ‘structures’ instead of ‘permutations’ (or ‘transformations’)
and the ‘world’. This criterion is historically traced to Lindström’s (1966) gen-
eralization of Mostowski’s approach (1957) (see [15]).
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geometries according to invariants under suitable groups of transfor-
mations. Klein pointed out that each geometric field can be charac-
terized by the invariance condition satisfied by its notions. Tarski’s
criterion of logicality extended this idea to the domain of logic. Per-
mutation invariance takes all one-one transformations into account
and as a result, characterizes, according to Tarski, the most gen-
eral notions. For Tarski, the science which studies these notions is
logic. If we interpret the formality of a theory as its invariance un-
der permutations of the universe it means that the theory does not
distinguish between individual objects and characterizes only those
properties of a model which do not depend on its nonstructural
transformations. Formal property should be preserved under the
arbitrary switching of individual objects. For example, ‘red’ and
‘green’ are non-formal properties, since they distinguish between
things which are red and green.

However the standard argument in favor of invariance under per-
mutation, which relies on the generality of logic, may be challenged.
Tarski considered the class of permutations as the most general class
of nonstructural transformations, since permutations do not respect
any extra-structure. On the contrary, as Denis Bonnay pointed out,
there are a lot of other concepts of similarity (i.e. approximate
preservation) between structures which are far less demanding then
Tarski’s criterion. Thus, ‘even if one grants that generality is a
good way to approach logicality, there is no evidence that the class
of all permutations is the best applicant for the job’ [2, p. 38].
On the other hand, Ludwig Wittgenstein, for example, does not
consider generality as a defining attribute of logicality; ‘The mark
of a logical proposition is not general validity. . . [18, 6.1231]. The
general validity of logic might be called essential, in contrast with
the accidental general validity of such propositions as ‘All men are
mortal’ [18, 6.1232]’. Yet, what kind of general validity is essential
and, as a result, logical for Wittgenstein?

2 Invariance Criterion Generalized

According to Tractatus, it is logically impossible for two colors to
be at one place at the same time. This is because of the ‘logical
structure of color’. As Wittgenstein pointed out,
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‘Just as the only necessity that exists is logical necessity,
so too the only impossibility that exists is logical impos-
sibility. . . [18, 6.375]. For example, the simultaneous
presence of two colours at the same place in the visual
field is impossible, in fact logically impossible, since it
is ruled out by the logical structure of colour (It is clear
that the logical product of two elementary propositions
can neither be a tautology nor a contradiction. The
statement that a point in the visual field has two differ-
ent colours at the same time is a contradiction.)’ [18,
6.3751].

According to Wittgenstein, color ascriptions should be elemen-
tary. But, as the concluding remark implies, they cannot be el-
ementary; the color ascriptions are logically interdependent, and
Wittgenstein said that elementary propositions are independent.
This is a well-known problem of color exclusion.

In Some Remarks on Logical Form Wittgenstein offered a solution
to this problem. Here he is interested in examining what he calls
the ‘logical structure’ or the ‘logical form’ of the ‘phenomena’. As
he says, ‘we can only arrive at a correct analysis by, what might be
called, the logical investigation of the phenomena themselves, i.e., in
a certain sense a posteriori, and not by conjecturing about a priori
possibilities’ [19, p. 163].

A posteriori color-incompatibility claims don’t express experience
in its usual sense. These tautologies are logically valid due to the
geometrical organization of color space. However, unlike Kant, this
appeal to geometry does not entail the synthetical character of the
corresponding statements. The point is that color space is a ‘space
of possibilities’ which is for Wittgenstein a logical space.

If our logic takes into account a spectrum of invariance which
preserves several additional structures, for example, a structure of
color space, we may get various types of logical invariance. There-
fore, following Wittgenstein we turn back from Tarski’s permutation
invariance criterion to Klein’s original program. From the point of
view of Klein’s ideology, the logic of colors may be considered as a
member of a family of various logics whose notions are invariant for
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one-one transformations which respect additional formal structures,
in particular, the formal relations of colors. The invariance criterion
which is generalized in this way is wide enough to include not only
one extreme type of invariance (i.e. permutation invariance), but
a variety of invariances which respect different types of ordering of
the universe (see also [17, p. 320]).

3 Wittgenstein’s ‘puzzle proposition’; meaning
postulates or mapping functions?

Now the key question is the following: Why did Wittgenstein con-
sider relations between colors as formal, logical ones? My main con-
cern is to clarify Wittgenstein’s ‘puzzle proposition’ from Remarks
on Colour that ‘there can be a bluish green but not a reddish green’.

In his famous paper Reds, Greens, and Logical Analysis Hilary
Putnam pointed out, that Wittgenstein’s ‘puzzle proposition’ is an-
alytic, in the sense in which ‘analytic’ means ‘true on the basis of
definitions plus logic’. He proposed to define the second-level pred-
icates ‘Red(F )’ (for ‘F is a shade of red’) and ‘Grn(F )’ (for ‘F is a
shade of green’). In defining these predicates we must be restricted,
in particular, by the postulate: ‘Nothing can be classified as both
a shade of red and a shade of green (i.e., ‘that shade of red’ and
‘that shade of green’ must never be used as synonyms)’ [12, p. 216].
Putnam’s approach to color-incompatibility has gained widespread
acceptance among recent writers on perception. As Larry Hardin
says in Color for Philosophers, ‘Perhaps not being red is part of the
concept of being green. Yet it seems that all a normal human being
has to do to have the concept of green is to experience green in an
appropriately reflective manner’ [5, p. 122] (see also [22]).

Nevertheless, the introduction of certain meaning postulates
seems to be irrelevant to the exegesis of Wittgenstein’s ideas. The
meaning postulates expand a family of analytic truths by means of
dictionary conventions. On the contrary, for Wittgenstein, internal
relations of colors are elementary (see, e.g. [20, § 80]). His ‘puz-
zle proposition’ is ‘in a certain sense a posteriori’ and its necessity
does not rely on the nature of colors or ‘normal human beings’,
but on the structural relations within the system of colors, i.e. on
the geometry of colors. The objective basis for the necessity of the
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color-incompatibility claims is the geometry of color space as ‘part
of the method of projection by which the reality is projected into
our symbolism’ [19, p. 166].

Contrary to the meaning postulates approach, Jaakko Hintikka
and Merrill Hintikka proposed to represent the concept of color ‘by
a function c which maps points in visual space into a color space.
Then the respective logical forms of ‘this patch is red’ and ‘this
patch is green’ would be c(a) = r and c(a) = g, where r and g are
the two separate objects red and green, respectively. The logical
incompatibility of the two color ascriptions is then reflected accord-
ing to Wittgensteinian principles by the fact that the colors red and
green are represented by different names. And if so, the two proposi-
tions are logically incompatible in the usual logical notation. Their
incompatibility is shown by their logical representation: a function
cannot have two different values for the same argument because of
its ‘logical form’, i.e., because of its logical type’ [6, p. 161]. As
Jaakko Hintikka pointed out, ‘nonlogical analytical truths some-
times turn out to be logical ones when their structure is analyzed
properly’ [8, p. 52].

Now here is a new puzzling question; is it possible to generalize
Hintikka’s approach on binary colors, e.g., on reddish green or bluish
yellow?

4 The opponent-processing model of binary colors
vision

We perceive many colors to be binary — purple, for example, as
a mixture of blue and red. We may see bluish red, but it seems
impossible to experience a color that would be described as a ‘red-
dish green’ or a ‘bluish yellow’ . Thus, certain antagonistic pairs of
colors seem not to be combined to form a binary color.

According to the opponent-processing model of colors which goes
back to Ewald Hering’s opponent process theory (1878), there are
different types of retinal photoreceptors with optimal spectral sen-
sitivity to specific wavelengths. Activity in any one type laterally
inhibits the activity of neighboring receptors of the same type (e.g.,
short, middle or long wavelength receptors). Signals from the cones
are assumed to be combined in an opposing fashion to produce op-
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posing signals in retinal ganglion cells. This means that the cells
are excited by the presentation of a given color and inhibited by
presence of its antagonist. Red-green and blue-yellow are supposed
to be spectrally opposing channels. Thus, it would be impossible
for a human observer to perceive both red and green (blue and yel-
low) simultaneously, as that percept would require the simultaneous
transmission of positive and negative signals in the same channel.
As red cancels green and blue cancels yellow, reddish green and
bluish yellow are considered to be ‘ forbidden’ binary colors by the
opponent-processing model.

The most surprising results in modern neuropsychological litera-
ture on color vision are reports that reddish green and yellowish blue
colors can be perceived (see, for example, [1] and [3]). In violation
of the classical opponent-processing model, ‘stabilized-image’ expe-
riments have shown that by stabilizing the retinal image between an
antagonistic pair of red/green or blue/yellow bipartite equiluminant
fields the entire region can be perceived simultaneously as both red
and green (blue and yellow) or, to be more precise, as a ‘forbidden’
homogeneous mixture color whose red and green (blue and yellow)
components were as clear as, for example, the green and blue com-
ponents of aqua.

The first attempt at modeling these opponency violations by He-
witt Crane and Thomas Piantanida was based on the hypothesis
that there is an extra stage of cortico-cortical rather then retino-
cortical visual processing, i.e. a non-opponent filling-in mechanism
[3, p. 1079]. The game-theoretical approach allows us to offer a
uniform explanation both to standard opponent perception and to
its violations in ‘stabilized-image’ experiments.

5 ‘Forbidden’ binary colors as evidence for
game-theoretical semantics

From the very beginning, the opponent-processing model of colors
developed in the game-theoretical framework. It suggested that the
basis for color sensations lies in a process of winner-take-all compe-
tition between red and green (blue and yellow). Now it is clear that
this model must take into account the competitive interactions be-
tween teams of color-labeled wavelength-selective cells. As Vincent
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Billock, Gerald Gleason and Brian Tsou pointed out, ‘Recent mod-
els of cortical color processing suggest that cortical color opponency
may not be based on hard-wired wavelength opponency within a
single cell but rather on (potentially fragile) interactions between
cortical color-sensitive cells’ [1, p. 2399]. They assumed that the
struggle between red- and green- (blue- and yellow-) labeled units
is simply blocked by the border synergy of equilumininance and
stabilization [1, p. 2401].

I suppose that there is no need to block the game processing
as a whole, as this synergistic effect may be captured by the game-
theoretical notion of payoff independence introduced by Ahti-Veikko
Pietarinen (see [13]). The main idea of my proposal is the interpre-
tation of opponency violations as payoff independence in ‘stabilized-
image’ games between red/green or blue/yellow teams of cortical
color-sensitive cells. In winner-take-all games, the following holds; if
there is a winning strategy of the red team then there does not exist
a winning strategy of the green team, and vice versa. In ‘stabilized-
image’ games the information exchange between the opponent teams
is blocked by the synergy of equilumininance and stabilization on
the cortical strategic meta-level. Consequently, both red and green
(blue and yellow) teams have winning strategies in these games. In
other words, ‘stabilized-image’ games are over-defined. Thus, the
law of non-contradiction fails in the generalized logic of colors al-
lowing the simultaneous perception of antagonistic pairs of colors.
In contrast to winner-take-all games, ‘stabilized-image’ games are
non-strictly competitive (on over-defined and non-strictly competi-
tive games see papers by Ahti-Veikko Pietarinen and Gabriel Sandu,
e.g. [14]).

Evidently, the process of ‘negotiations’ between teams of oppo-
nent colors is nonlinear and gradual. As shown by Billock, Glea-
son and Tsou, transparency and gradient effects preceded percep-
tion of homogeneous ‘forbidden’ colors. Their experiments also il-
lustrated an entirely novel percept (4 out of 7 subjects) in which
the red and green (or blue and yellow) bipartite fields abruptly
exchange sides (one subject saw a 90◦ reorganization of the bipar-
tite fields) [1, pp. 2398–2399]. These experimental data indirectly
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confirm Wittgenstein’s statement about different types of space3.
Switching effects in ‘stabilized-image’ experiments lead to simul-
taneous or serial reorganizations of both visual and color spaces.
Whereas Wittgenstein clearly does not think that the science, and
particularly neuroscience, is relevant to the resolution of philosophi-
cal problems, sometimes neuropsychological experiments influences
our colors geometry, which, in turn, constitutes what the colors are.
Perhaps, tomorrow the invention of special glasses with a built-in
eye tracker will make reddish green and bluish yellow common colors
of our ‘form of life’.

In conclusion, the basic advantage of the game-theoretical ap-
proach to the logic of colors is its procedural character. Concern-
ing the logic of binary colors, game-theoretical models seem to be
the best, since a variety of game-theoretical independences provides
important insights into the theory of opponent-processing. Game-
theoretical notion of strategy allows us to generalize Hintikka’s ap-
proach to colors as mapping functions on binary colors, in particular,
on ‘forbidden’ binary colors.
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