О некоторых функциональных свойствах трехзначных матриц для классической логики

Л. Ю. ДЕВЯТКИН

ABSTRACT. In this paper a number of functional properties of implicative-negative three-valued logical matrices with the classical cosequence relation is described.

Ключевые слова: классическая пропозициональная логика, трехзначная логика, отношение логического следования, логические матрицы

В данной статье будет рассмотрен ряд трехзначных семантик для классической пропозициональной логики, построенных с помощью логических матриц.

Дадим ряд необходимых определений.

ОПРЕДЕЛЕНИЕ 1 (Алфавит пропозиционального языка $L_{\supset \neg}$). Алфавиту пропозиционального языка $L_{\supset \neg}$ принадлежат только следующие символы: бинарная логическая связка \supset , унарная логическая связка \neg , пропозициональные переменные p_1, p_2, p_3, \ldots , а также скобки.

ОПРЕДЕЛЕНИЕ 2 ($L_{\supset \neg}$ -формула). Каждая пропозициональная переменная p_i есть $L_{\supset \neg}$ -формула. Если $A-L_{\supset \neg}$ -формула, то $\neg A$ есть $L_{\supset \neg}$ -формула. Если A и $B-L_{\supset \neg}$ -формулы, то $A \supset B$ есть $L_{\supset \neg}$ -формула. Ничто иное не $L_{\supset \neg}$ -формула.

ОПРЕДЕЛЕНИЕ 3 (Логическая матрица). Будем называть логической матрицей $M=\langle U,F,D\rangle$, где U — непустое множество, D — непустое подмножество U, интерпретируемое как множество выделенных значений, F — множество операций, заданных на U.

Если не указано иное, будем рассматривать матрицы, в которых множество F содержит в точности одну бинарную и одну унарную базовые операции.

ОПРЕДЕЛЕНИЕ 4 (Оценка $L_{\supset \neg}$ -формулы в M). Оценку v произвольной $L_{\supset \neg}$ -формулы A в M (символически — $|A|_v^M$) определим обычным образом: $|p|_v^M \in U$, если p есть пропозициональная переменная; если A и B есть $L_{\supset \neg}$ -формулы, а \to и \sim есть соответственно бинарная и унарная базовые операции M, то $|A \supset B|_v^M = |A|_v^M \to |B|_v^M$, $|\neg A|_v^M = \sim |A|_v^M$.

ОПРЕДЕЛЕНИЕ 5 (Логический закон). $L_{\supset \neg}$ -формула A является законом в логической матрице M, е.т.е. $|A|_v^M \in D$ при каждой оценке v в M.

ОПРЕДЕЛЕНИЕ 6 (Отношение логического следования). $L_{\supset \neg}$ формула B логически следует из множества посылок Γ в M (символически $\Gamma \models_M B$), е.т.е. не существует оценки v в M, при которой все формулы из Γ принимают выделенное значение, а формула B принимает невыделенное значение.

ОПРЕДЕЛЕНИЕ 7 (Классическое отношение логического следования в M). Пусть логическая матрица $M_2 = \langle \{1,0\}, \supset^+, \neg^+, \{1\} \rangle$ есть матрица для классической пропозициональной логики, а \supset^+ и \neg^+ определяются стандартными таблицами истинности для импликации и отрицания. Пусть $M_3 = \langle \{1,\frac{1}{2},0\}, \supset^*, \neg^*, \{1\} \rangle$ есть произвольная матрица с трехэлементным множеством-носителем, на котором заданы одна бинарная и одна унарная базовые операции. Будем говорить, что отношение логического следования в M_3 является классическим, если и только если выполняется следующе условие: $\Gamma \models_{M_2} B$, е.т.е. $\Gamma \models_{M_3} B$.

Можно доказать следующую теорему [2]:

ТЕОРЕМА 1. Отношение логического следования в M_3 является классическим, только когда базовые связки M_3 отвечают следующим условиям: $x \supset^* y = 1$, e.m.e. $x \in \{\frac{1}{2}, 0\}$ или y = 1, в противном случае $x \supset^* y \in \{\frac{1}{2}, 0\}$; $\neg^* x = 1$, e.m.e. $x \in \{\frac{1}{2}, 0\}$, в противном случае $\neg^* x \in \{\frac{1}{2}, 0\}$.

Существует восемь наборов связок, отвечающих данному условию:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} & \neg^{\epsilon} \\ \hline 1 & 0 \\ \frac{1}{2} & 1 \\ 0 & 1 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} & \neg^{\epsilon} \\ \hline 1 & 0 \\ \frac{1}{2} & 1 \\ 0 & 1 \end{array} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} & \neg^{\epsilon} \\ 1 & 0 \\ \frac{1}{2} & 1 \\ 0 & 1 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & \neg^{\epsilon} \\ \hline 1 & 0 \\ \frac{1}{2} & 1 \\ 0 & 1 \\ \hline \end{array}$
$\begin{array}{c ccccc} \bigcirc^{\alpha} & 1 & \frac{1}{2} & 0 \\ \hline 1 & 1 & 0 & 0 \\ \frac{1}{2} & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ \end{array}$	$ \begin{array}{c c} & \neg^{\varphi} \\ \hline 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \\ 0 & 1 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} & \neg^{\varphi} \\ \hline 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \\ 0 & 1 \end{array} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} & \neg^{\varphi} \\ \hline 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \\ 0 & 1 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & \neg^{\varphi} \\ \hline 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \\ 0 & 1 \\ \end{array}$

Таким образом, может быть построено восемь логических матриц с трехэлементным множеством-носителем, в которых отношение логического следования является классическим. Обозначим их соответственно как $M_3^{\alpha,\epsilon}$, $M_3^{\beta,\epsilon}$, $M_3^{\gamma,\epsilon}$, $M_3^{\delta,\epsilon}$, $M_3^{\alpha,\varphi}$, $M_3^{\beta,\varphi}$, $M_3^{\beta,\varphi}$, $M_3^{\alpha,\varphi}$, $M_3^{\beta,\varphi}$, Некоторые из перечисленных связок достаточно известны. Так, первый набор связок — это внешние импликаци и отрицание трехзначной логики Бочвара $\mathbf{B_3}$ [1]. Связка \supset^{β} была независимо описана в целом ряде работ [4, 5, 6].

Как известно (см., например, [3]), классические импликация и отрицание образуют функционально полную систему связок, т. е. с их помощью может быть выражена любая функция, заданная на $\{1,0\}$. Интересно, что в случае с приведенными выше наборами связок ситуация совершенно иная.

УТВЕРЖДЕНИЕ 1. Используя базовые операции $M_3^{\alpha,\epsilon}$ и $M_3^{\delta,\varphi}$, нельзя выразить никакие иные из описанных нами связок.

Доказательство. Ясно, что любая функция, выразимая в данных матрицах, имеет область значения $\{1,0\}$ или $\{1,\frac{1}{2}\}$ соответственно. Однако это неверно для остальных матриц. Q.E.D.

УТВЕРЖДЕНИЕ 2. В $M_3^{\beta,\epsilon}$ выразимы связки $M_3^{\alpha,\epsilon}$ и не выразимы базовые связки остальных матриц.

Доказательство. Импликация из $M_3^{\alpha,\epsilon}$ выражается следующим образом: $x\supset^{\alpha}y=\neg^{\epsilon}\neg^{\epsilon}(x\supset^{\beta}y)$. В то же время все функции $M_3^{\beta,\epsilon}$ имеют область значений $\{1,0\}$ при ограничении значений переменных тем же множеством. Однако это неверно для остальных матриц. Q.E.D.

УТВЕРЖДЕНИЕ 3. В $M_3^{\beta,\varphi}$ выразимы связки $M_3^{\delta,\varphi}$ и не выразимы базовые связки остальных матрии.

Доказательство. Импликация из $M_3^{\delta,\varphi}$ выражается аналогично предыдущему случаю: $x\supset^\delta y=\neg^{\varphi}\neg^{\varphi}(x\supset^{\beta}y).$

Покажем, что через базовые операции $M_3^{\beta,\varphi}$ нельзя выразить унарный оператор f^1 , такой, что $f^1(1)=0$.

Индуктивное допущение. Пусть f^1 нельзя выразить в $M_3^{\beta,\varphi},$ используя менее k вхождений \supset^β и $\neg^\varphi.$

Теперь допустим, что f^1 можно выразить посредством суперпозиции g операций \supset^β и \neg^φ , содержащей в точности k вхождений данных операций.

Случай 1. $g(x) = \neg^{\varphi} h(x)$. Тогда $\neg^{\varphi} h(1) = 0$. Однако это невозможно в силу определения \neg^{φ} .

Случай 2. $g(x) = h'(x) \supset^{\beta} h''(x)$.

- 1. $h'(1) \supset^{\beta} h''(1) = 0$ (по условию)
- 2. h'(1) = 1 и h''(1) = 0 (по определению \supset^{β})
- 3. h''(1) = 0. Число вхождений \supset^{β} и \neg^{φ} в h'' меньше k. противоречие с индуктивным допущением.

Индукция закончена. Оператор f^1 невыразим в $M_3^{\beta,\varphi}$.

Однако этот оператор выразим в остальных матрицах: $x\supset^{\alpha}$ $\neg^{\varphi}x$ для $M_3^{\alpha,\varphi}, \ x\supset^{\gamma}\neg^{\varphi}x$ для $M_3^{\gamma,\varphi}, \ \neg^{\epsilon}x$ для остальных матриц. Q.E.D.

УТВЕРЖДЕНИЕ 4. $M_3^{\delta,\epsilon}$ функционально эквивалентна $M_3^{\alpha,\varphi}$. В этих матрицах выразимы базовые операции $M_3^{\alpha,\epsilon}$ и $M_3^{\delta,\varphi}$ и не выразимы базовые операции $M_3^{\beta,\epsilon}$, $M_3^{\beta,\varphi}$, $M_3^{\gamma,\epsilon}$ и $M_3^{\gamma,\varphi}$.

Доказательство. Функциональная эквивалентность $M_3^{\delta,\epsilon}$ и $M_3^{\alpha,\varphi}$ и выразимость базовых операций $M_3^{\alpha,\epsilon}$ и $M_3^{\delta,\varphi}$:

- $x \supset^{\alpha} y = \neg^{\epsilon} \neg^{\epsilon} (x \supset^{\delta} y);$
- $\bullet \ \neg^{\varphi} x = x \supset^{\delta} \neg^{\epsilon} x;$
- $x \supset^{\delta} y = \neg^{\varphi} \neg^{\varphi} (x \supset^{\alpha} y);$
- $\bullet \ \neg^{\epsilon} x = x \supset^{\alpha} \neg^{\varphi} x.$

Теперь покажем, что через базовые операции $M_3^{\delta,\epsilon}$ нельзя выразить унарный оператор f^1 , такой, что $f^1(\frac{1}{2}) \neq f^1(0)$, содержещий не меньше одного вхождения базовой операции.

Индуктивное допущение. Пусть f^1 нельзя выразить в $M_3^{\delta,\epsilon}$, используя менее $k\ (k\ge 1)$ вхождений \supset^δ и \neg^ϵ .

Допустим, что f^1 можно выразить посредством суперпозиции g операций \supset^δ и \neg^ϵ , содержащей в точности k вхождений данных операций.

Случай 1. Пусть $g(x) = \neg^{\epsilon} h(x)$

- 1. $\neg^{\epsilon}h(\frac{1}{2}) \neq \neg^{\epsilon}h(0)$ (по условию)
- 2. h(x) содержит l (0 < l < k) вхождений базовых операций или h(x) есть x (по условию)
- 3. Пусть h(x) есть x (допущение)
- 4. $\neg^{\epsilon} \frac{1}{2} \neq \neg^{\epsilon} 0$ (из 1, 3)
- 5. $\neg \epsilon \frac{1}{2} = \neg \epsilon 0$ (по определению $\neg \epsilon$)
- 6. h(x) содержит l вхождений базовых операций (из 2–5)
- 7. $h(\frac{1}{2}) = h(0)$ (из 6 по индуктивному допущению)
- 8. $\neg^{\epsilon}h(\frac{1}{2}) = \neg^{\epsilon}h(0)$ (из 7 по определению \neg^{ϵ})
- 9. Неверно, что $g(x) = \neg^{\epsilon} h(x)$ (из 1, 8)

Случай 2. Пусть $g(x) = h'(x) \supset^{\delta} h''(x)$.

1. $h'(\frac{1}{2}) \supset^{\delta} h''(\frac{1}{2}) \neq h'(0) \supset^{\delta} h''(0)$ (по условию)

- 2. h'(x) содержит l (0 < l < k) вхождений базовых операций или h'(x) есть x (по условию)
- 3. h''(x) содержит m (0 < m < k) вхождений базовых операций или h''(x) есть x (по условию)
- 4. Пусть h'(x) есть x и h''(x) есть x (допущение)
- 5. $\frac{1}{2}\supset^{\delta}\frac{1}{2}\neq 0\supset^{\delta}0$ (из 1, 4)
- 6. $\frac{1}{2}\supset^{\delta}\frac{1}{2}=0\supset^{\delta}0$ (по определению $\supset^{\delta})$
- 7. Неверно, что h'(x) есть x и h''(x) есть x (из 5, 6)
- 8. Пусть h'(x) содержит l вхождений и h''(x) содержит m вхождений базовых операций.
- 9. $h'(\frac{1}{2}) = h'(0)$ (из 8 по индуктивному допущению)
- 10. $h''(\frac{1}{2}) = h''(0)$ (из 8 по индуктивному допущению)
- 11. $h'(\frac{1}{2}) \supset^{\delta} h''(\frac{1}{2}) = h'(0) \supset^{\delta} h''(0)$ (по определению \supset^{δ})
- 12. Неверно, что h'(x) содержит l вхождений и h''(x) содержит m вхождений базовых операций (из 1, 11).
- 13. Пусть h'(x) содержит l вхождений базовых операций и h''(x) есть x (допущение)
- 14. $h'(\frac{1}{2}) \supset^{\delta} (\frac{1}{2}) \neq h'(0) \supset^{\delta} (0)$ (из 1, 13)
- 15. $h'(\frac{1}{2})\supset^{\delta}(\frac{1}{2})=\frac{1}{2}$ и $h'(0)\supset^{\delta}(0)=1$, или $h'(\frac{1}{2})\supset^{\delta}(\frac{1}{2})=1$ и $h'(0)\supset^{\delta}(0)=\frac{1}{2}$ (из 14 по определению \supset^{δ})
- 16. Пусть $h'(\frac{1}{2})\supset^{\delta}(\frac{1}{2})=\frac{1}{2}$ и $h'(0)\supset^{\delta}(0)=1$ (допущение)
- 17. $h'(\frac{1}{2})=1$ (из 16 по определению \supset^{δ})
- 18. $h'(0) \neq 1$ (из 16 по определению \supset^{δ})
- 19. $h'(\frac{1}{2}) \neq h'(0)$ (из 17, 18)
- 20. Неверно, что $h'(\frac{1}{2})\supset^{\delta}(\frac{1}{2})=\frac{1}{2}$ и $h'(0)\supset^{\delta}(0)=1$ (из 19 и индуктивного допущения)

21.
$$h'(\frac{1}{2}) \supset^{\delta} (\frac{1}{2}) = 1$$
 и $h'(0) \supset^{\delta} (0) = \frac{1}{2}$ (из 15, 20)

22.
$$h'(\frac{1}{2}) \neq 1$$
 (из 21 по определению \supset^{δ})

23.
$$h'(0) = 1$$
 (из 21 по определению \supset^{δ})

24.
$$h'(\frac{1}{2}) \neq h'(0)$$
 (из 22, 23)

- 25. Неверно, что h'(x) содержит l вхождений базовых операций и h''(x) есть x (из 24 и индуктивного допущения)
- 26. Пусть h'(x) есть x и h''(x) содержит m вхождений базовых операций (допущение)
- 27. $\frac{1}{2}\supset^{\delta}h''(\frac{1}{2})=\frac{1}{2}$ и $0\supset^{\delta}h''(0)=1$, или $\frac{1}{2}\supset^{\delta}h''(\frac{1}{2})=1$ и $0\supset^{\delta}h''(0)=\frac{1}{2}$ (из 26 по определению \supset^{δ}). Однако это невозможно в силу определения \supset^{δ} .
- 28. Неверно, что h'(x) есть x и h''(x) содержит m вхождений базовых операций (из 27)

29. Неверно, что
$$g(x) = h'(x) \supset^{\delta} h''(x)$$
 (из 2, 3, 4, 12, 25, 28)

Таким образом, через базовые операции $M_3^{\delta,\epsilon}$ нельзя выразить унарный оператор f^1 , такой, что $f^1(\frac{1}{2}) \neq f^1(0)$, содержещий не меньше одного вхождения базовой операции.

меньше одного вхождения оазовой операции. Однако такой оператор выразим в
$$M_3^{\beta,\epsilon}$$
, $M_3^{\beta,\varphi}$, $M_3^{\gamma,\epsilon}$ и $M_3^{\gamma,\varphi}$: $(x\supset^\beta x)\supset^\beta x, (x\supset^\gamma x)\supset^\gamma x.$ Q.E.D.

УТВЕРЖДЕНИЕ 5. $M_3^{\gamma,\epsilon}$ функционально эквивалентна $M_3^{\gamma,\varphi}$. В этих матрицах также выразимы базовые связки всех остальных матриц.

Доказательство. Чтобы доказать данное утверждение, достаточно следующих тождеств:

$$\bullet \ \neg^{\varphi} x = x \supset^{\gamma} \neg^{\epsilon} x$$

$$\bullet \neg^{\epsilon} x = x \neg^{\gamma} \neg^{\varphi} x$$

•
$$x \supset^{\beta} y = x \supset^{\gamma} (\neg^{\varphi} y \supset^{\gamma} y)$$

•
$$x \supset^{\delta} y = \neg^{\varphi} \neg^{\varphi} (x \supset^{\gamma} y)$$

Q.E.D.

Обобщая доказанные утверждения, можно заключить, что между матрицами $M_3^{\alpha,\epsilon},\ M_3^{\beta,\epsilon},\ M_3^{\gamma,\epsilon},\ M_3^{\delta,\epsilon},\ M_3^{\alpha,\varphi},\ M_3^{\beta,\varphi},\ M_3^{\gamma,\varphi},\ M_3^{\gamma,\varphi},\ M_3^{\gamma,\varphi}$ имеет место порядок по отношению выразимости базовых связок. Причем, $M_3^{\gamma,\epsilon}$ и функционально эквивалентная ей $M_3^{\gamma,\varphi}$ выступают в роли максимума, $M_3^{\alpha,\epsilon}$ и $M_3^{\delta,\varphi}$ есть несравнимые минимумы, а $M_3^{\beta,\epsilon},\ M_3^{\beta,\varphi}$ и $M_3^{\delta,\epsilon},\$ функционально эквивалентная $M_3^{\alpha,\varphi}$ представляют собой три несравнимых промежуточных элемента.



УТВЕРЖДЕНИЕ 6. Набор базовых операций $M_3^{\gamma,\epsilon}$ не является функционально полным в P_3 .

Доказательство. Покажем, что через операции \neg^{ϵ} и \supset^{γ} невыразим унарный оператор $f^1(x)$, такой что $f^1(\frac{1}{2})=1$ и $f^1(0)=0$. Индуктивное допущение. Пусть f^1 нельзя выразить в $M_3^{\gamma,\epsilon}$,

Теперь допустим, что f^1 можно выразить посредством суперпозиции g операций \supset^{γ} и \neg^{ϵ} , содержащей в точности k вхождений данных операций.

Случай 1. Пусть g(x) есть $\neg^{\epsilon}h(x)$

используя менее k вхождений \supset^{γ} и \neg^{ϵ} .

1.
$$\neg^{\epsilon}h(\frac{1}{2})=1$$
 и $\neg^{\epsilon}h(0)=0$ (по условию)

- 2. $h(\frac{1}{2}) \neq 1$ и h(0) = 1 (в силу определения \neg^{ϵ})
- 3. h(x) содержит по меньшей мере одну операцию и имеет вид $\neg^{\epsilon}h^{*}(x)$ или $h'(x)\supset^{\gamma}h''(x)$ (из 2)
- 4. Пусть h(x) имеет вид $\neg^{\epsilon}h^{*}(x)$ (допущение)
- 5. $\neg^{\epsilon}h^{*}(\frac{1}{2}) \neq 1$ и $\neg^{\epsilon}h^{*}(0) = 1$ (из 2 и 4)
- 6. $h^*(\frac{1}{2}) = 1$ и $h^*(0) = 0$ (из 5 по определеню \neg^{ϵ}). Однако это противоречит индуктивному допущению. Следовательно, неверно, что h(x) имеет вид $\neg^{\epsilon}h^*(x)$.
- 7. h(x) имеет вид $h'(x) \supset^{\gamma} h''(x)$ (из 3 и 6)
- 8. $h'(\frac{1}{2}) \supset^{\gamma} h''(\frac{1}{2}) \neq 1$ и $h'(0) \supset^{\gamma} h''(0) = 1$ (из 1, 7)
- 9. $h'(\frac{1}{2}) = 1$ и $h''(\frac{1}{2}) \neq 1$ (из 8)
- 10. $h'(0) \neq 1$ или h''(0) = 1 (из 8)
- 11. Пусть $h'(0) \neq 1$ (Допущение)
- 12. $\neg^{\epsilon} \neg^{\epsilon} h'(0) = 0$ (из 11 по определению \neg^{ϵ})
- 13. $\neg^{\epsilon} \neg^{\epsilon} h'(\frac{1}{2}) = 1$ (из 9 по определению \neg^{ϵ})
- 14. $\neg^{\epsilon} \neg^{\epsilon} h'(x)$ содержит менее k вхождений связок. Следовательно, неверно, что $h'(0) \neq 1$ (из 12, 13 и индуктивного допущения)
- 15. h''(0) = 1 (из 10, 14)
- 16. $\neg^{\epsilon}h''(0) = 0$ (из 15 по определению \neg^{ϵ})
- 17. $\neg^{\epsilon}h''(\frac{1}{2})=1$ (из 9 по определению \neg^{ϵ})
- 18. $\neg^{\epsilon}h''(x)$ содержит менее k вхождений связок. Неверно, что g(x) есть $\neg^{\epsilon}h(x)$ (из 16, 17 и индуктивного допущения)

Случай 2. Пусть g(x) есть $h'(x) \supset^{\gamma} h''(x)$

- 1. $h'(\frac{1}{2})\supset^{\gamma}h''(\frac{1}{2})=1$ и $h'(0)\supset^{\gamma}h''(0)=0$ (по условию)
- 2. h'(0)=1 и $h''(0)=\frac{1}{2}$ (из 1 по определению \supset^γ)

- 3. $h'(\frac{1}{2}) \neq 1$ или $h''(\frac{1}{2}) = 1$ (из 1 по определению \supset^{γ})
- 4. Пусть $h'(\frac{1}{2}) \neq 1$ (Допущение)
- 5. $\neg^{\epsilon}h'(\frac{1}{2})=1$ (из 4 по определению \neg^{ϵ})
- 6. $\neg^{\epsilon}h'(0) = 0$ (из 2 по определению \neg^{ϵ})
- 7. $\neg^{\epsilon}h'(x)$ содержит менее k вхождений операций. Таким образом, неверно, что $h'(\frac{1}{2}) \neq 1$ (из 5, 6 и индуктивного допущения)
- 8. $h''(\frac{1}{2}) = 1$ (из 3, 7)
- 9. $\neg^{\epsilon} \neg^{\epsilon} h''(\frac{1}{2}) = 1$ (из 8 по определению \neg^{ϵ})
- 10. $\neg^{\epsilon} \neg^{\epsilon} h''(0) = 0$ (из 2 по определению \neg^{ϵ})
- 11. $\neg^{\epsilon} \neg^{\epsilon} h''(x)$ содержит $m(m \leq k)$ операций. Однако это противоречит индуктивному допущению и Случаю 1 настоящего доказательства.

Таким образом, набор базовых операций $M_3^{\gamma,\epsilon}$ не является функционально полным в P_3 . Q.E.D.

Мы показали, что различные трехэлементные матрицы с классическим отношением логического следования не только различаются по силе с функциональной точки зрения, но и образуют достаточно интересную структуру. Можно сделать вывод, что функциональная полнота системы базовых связок в импликативно-негативной логической матрице не является необходимым свойством классической логики высказываний.

В стандартной двузначной матрице классические конъюнкция и дизъюнкция обладают совйствами решеточных операторов. То есть они удовлетворяют следующим тождествам:

- $Идемпотентность: x \lor x = x, x \land x = x;$
- Коммутативность: $x \vee y = y \vee x, x \wedge y = y \wedge x$;
- Ассоциативность: $x \lor (y \lor z) = (x \lor y) \lor z, \ x \land (y \land z) = (x \land y) \land z;$

• Поглощение: $x \vee (x \wedge y) = x$, $x \wedge (x \vee y) = x$.

Так ли это для рассмотренных выше матриц? Выразим дизъюнкцию через импликацию и отрицание:

$$x \lor y = \neg x \supset y$$
.

В зависимости от выбранных \neg и \supset может получиться одна из следующих связок.

\vee^1	1	$\frac{1}{2}$	0		\vee^2	1	$\frac{1}{2}$	0
1	1	1	1		1	1	1	1
$\begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix}$	1	0	0		$\begin{array}{c c} \frac{1}{2} \\ 0 \end{array}$	1	$\frac{1}{2}$ $\frac{1}{2}$	0
0	1	0	0		0	1	$\frac{1}{2}$	0
_		-		1 1			-	

\vee^3	1	$\frac{1}{2}$	0	\vee^4	1	$\frac{1}{2}$	0
1	1	1	1	1	1	1	1
$\frac{1}{2}$	1	0	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$
0	1	0	$\frac{1}{2}$	0	1	$\frac{1}{2}$	$\frac{1}{2}$

Операции \vee^1 сответствуют $M_3^{\alpha,\epsilon}$ и $M_3^{\alpha,\varphi}$. Операции \vee^2 сответствуют $M_3^{\beta,\epsilon}$ и $M_3^{\beta,\varphi}$. Операции \vee^3 сответствуют $M_3^{\gamma,\epsilon}$ и $M_3^{\gamma,\varphi}$. Операции \vee^4 сответствуют $M_3^{\delta,\epsilon}$ и $M_3^{\delta,\varphi}$.

Теперь определим конъюнкцию через ипликацию и отрицание:

$$x \wedge y = \neg(x \supset \neg y).$$

В зависимости от выбранных ¬ и ⊃ возможны два варианта.

\wedge^1	1	$\frac{1}{2}$	0	\wedge^2	1	$\frac{1}{2}$	0
1	1	0	0	1	1	$\frac{1}{2}$	$\frac{1}{2}$
$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
0	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$

Операции \wedge^1 соответствуют $M_3^{\alpha,\epsilon},\,M_3^{\beta,\epsilon},\,M_3^{\gamma,\epsilon},\,M_3^{\delta,\epsilon}$. Операции \wedge^2 соответствуют $M_3^{\alpha,\varphi},\,M_3^{\beta,\varphi},\,M_3^{\gamma,\varphi},\,M_3^{\delta,\varphi}$.

	$M_3^{\alpha,\epsilon}$	$M_3^{\beta,\epsilon}$	$M_3^{\gamma,\epsilon}$	$M_3^{\delta,\epsilon}$
$x \lor x = x$	_	+	_	_
$x \wedge x = x$	_	_	1	-
$x \vee y = y \vee x$	+	_	_	+
$x \wedge y = y \wedge x$	+	+	+	+
$x \lor (y \lor z) = (x \lor y) \lor z$	+	+	_	+
$x \wedge (y \wedge z) = (x \wedge y) \wedge z$	+	+	+	+
$x \lor (x \land y) = x$	_	_	_	_
$x \land (x \lor y) = x$	_	_	_	_

	$M_3^{\alpha,\varphi}$	$M_3^{\beta,\varphi}$	$M_3^{\gamma,\varphi}$	$M_3^{\delta,\varphi}$
$x \vee x = x$	_	+	_	_
$x \wedge x = x$	_	_	_	_
$x \vee y = y \vee x$	+	_	_	+
$x \wedge y = y \wedge x$	+	+	+	+
$x \lor (y \lor z) = (x \lor y) \lor z$	+	+	_	+
$x \wedge (y \wedge z) = (x \wedge y) \wedge z$	+	+	+	+
$x \lor (x \land y) = x$	_	_	_	_
$x \land (x \lor y) = x$	_	_	_	_

Таким образом, ни в одной из рассматриваемых матриц дизъюнкция и конъюнкция не обладают свойствами решеточных операторов.

Литература

- Бочвар Д.А. Об одном трехзначном исчислении и его применении к анализу парадоксов классического расширенного функционального исчисления // Математический сборник. Т. 4, № 2. 1938. С. 287-308.
- [2] Девяткин Л.Ю. Многозначные изоморфы классической пропозициональной логики. Кандидатская диссертация на соискание ученой степени кандидата философских наук. М., 2008. С. 29.
- [3] Мендельсон Э. Введение в математическую логику. М., 1984. С. 33.
- [4] Avron A. Natural 3-valued logics characterization and proof theory // The Journal of Symbolic Logic. Vol. 56. № 1. P. 276-294.
- [5] Monteiro A. Construction des algebres de Lukasiewicz trivalentes dans les algebres de Boole monadiques, I // Mathematica Japonica. Vol. 12. P. 1-23.
- [6] Słupecki J., Bryl J. and Prucnal T. Some remarks on the three-valued logic of J. Jukasiewicz // Studia Logica. Vol. 21. P. 45-70.