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abstract. This note surveys some previous results on the role of
formal polynomials as a representation method for logical derivation
in classical and non-classical logics, emphasizing many-valued logics,
paraconsistent logics and modal logics. It also discusses the potentialities
of formal polynomials as heuristic devices in logic and for expressing
certain meta-logical properties, as well as pointing to some promising
generalizations towards algebraic geometry.
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1 Formal polynomials as algebraic proof procedures:
a brief survey

Algebraic proof systems based on formal polynomials over algebrai-
cally closed fields (the “polynomial ring calculus”) were introduced
in [7] (see also [8] and [9]). However, the Russian mathematician
Ivan Ivanovich Zhegalkin had already proposed in 1927 a method
(cf. [26]) to translate and decide propositions from A. Whitehead
and B. Russell’s Principia Mathematica by means of polynomials
with coefficients in the two-element field Z2; some intuitions in the
same direction can be found in the work of the Russian/Ukrainian
logician Platon Sergeevich Poretskij (cf. [3]).

In the development of [7], [8] and [9] sentences are identified
as multivariable polynomials in the ring GFpn [X] of polynomials
with coefficients in the Galois field of order pn, and propositional
derivability is reduced to checking whether or not certain families
of polynomials have zeros (reading truth-values as elements of the
field). In this way, questions of satisfiability can be related to the
Hilbert’s Nullstellensatz (cf. for instance, [25])), a well-known result
of algebraic geometry that asserts in general for F an algebraically
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closed field and f, g1, . . . , gm multivariable polynomials in F [X],
that f has a common zero with g1, . . . , gm iff there is an integer
k and polynomials h1, . . . , hm ∈ F [X] so that fk =

∑
1≤i≤n hi · gi.

A discussion and more details on how the uses of such fundamental
results are related to obtaining proofs in many-valued logics can be
found in [8] and [9].

The above mentioning of algebraic geometry is not fortuitous.
Actually, commutative algebra and algebraic geometry may be the
right setting to couple logic and pure mathematics. As it is well
known, distinct algebraic varieties (in particular, classes of lattices)
are coupled with distinct logics. Paradigmatic cases are Boolean
algebras (associated to classical propositional logic) and Heyting
algebras (associated to Intuitionistic Logic). Although we are using
only Boolean rings (defined as polynomial rings based upon finite
fields, as it will be clear in the following) where the identity xn = x is
pivotal, we could naturally think about dropping this law, working
with commutative rings in general.

Formal polynomials as algebraic proof procedures revamp the idea
of using algebraic methods to deal with proofs, already implicit in
the work of Gottfried Wilhelm von Leibniz, George Boole, Augustus
De Morgan, Charles Sanders Peirce, Ernst Schröder, David Hilbert
and Alfred Tarski, just to mention some important predecessors. It
is interesting to recall that we owe De Morgan in [15] a century-old
pioneering remark that logical conjunction is just a particular case
of composition of binary relations, a topic further developed as a
full study of relation algebras by Tarski.

There is also a more recent idea of using this machinery to investi-
gate proof complexity by means of the so-called Gröbner basis (cf.
[14]), but this is surely no more than scratching the surface of the
potentialities of algebraic methods in proofs (complexity among
them).

Polynomial ring calculus are particularly appropriate for automa-
tic proof systems not only for finitely many-valued logics, but also
for non-truth-functional logics, including modal logics (cf. [1]): even
logics that have no finite-valued characteristic semantics, as the
paraconsistent logics, can be given a two-valued dyadic semantics
expressed by multivariable polynomials over the ring Z2[X].

We survey below the basic ideas on polynomial ring calculus
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(PRC) for (finitely) many-valued logics, following [7] and [8]. We
suppose the logics to be explicitly given by means of a signature,
designated truth-values, etc. (see [18]). All calculations are done
within finite (Galois) fields, what is convenient in the case of pn-
valued logics, particularly to the most conspicuous three-, four-,
and five-valued logics, considering that those are the overwhelming
majority of many-valued logics in practice. It is simple to see, how-
ever, that for example 6-valued logics can be embedded into the
next prime-valued logic, and treated in an analogous way.

Let F be any abelian ring (in most of the applications below, a
finite field) with unity 1, and let 0 be the zero of F . Let F [X] be the
ring of all finite polynomials in the variables x1, x2, . . . , xm, . . . with
arbitrary degree and characteristic pn. A polynomial ring proposition
for L is any polynomial f ∈ F [X] on the variables x⃗; f is satisfiable if
there exists a polynomial evaluation in F which produces d ∈ D ⊂ F
(denoted by f(x⃗) = d) where D is the set of designated truth-values
of L; see definition below). The notation is simplified to f = d,
and f ≈ g means that f = g for all evaluations in F . In particular,
f ≈ d for d ∈ F means, of course, that f coincides with the constant
polynomial d.

The ring rules of PRC are the following for every f, g, h ∈ F [X],
f + g ∈ F [X] and f · g ∈ F [X]:

1. f + (g + h) ⊢≈ (f + g) + h

2. f + g ⊢≈ g + f

3. f + 0 ⊢≈ f

4. f + (−f) ⊢≈ 0

5. f · (g · h) ⊢≈ (f · g) · h

6. f · (g + h) ⊢≈ f · g + f · h

The letters x, y, z, . . . (with or without indices) are used as meta-
variables over variables, f, g, h, . . . as metavariables over polynomials.

The PRC based on F for L is defined in the following way:

1. Its terms are all variables, and its formulas are all polynomials
of F [X];
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2. The bases are the ring rules plus the polynomial rules pn ·
x = x + x + . . . ⊢≈ 0(summing x exactly pn times) and
xi · xj ⊢≈ xk(mod p(x)) for k ≡ i + j(mod (pn − 1)) where
p(x) is a convenient primitive polynomial (i.e., an irreducible
polynomial of degree n with coefficients in Zp);

3. There are two inference (meta)rules, the Uniform Substitution
(US): f ⊢≈ g/f [x : h] ⊢≈ g[x : h] and the Leibnitz rule (LR):
f ⊢≈ g/h[x : f ] ⊢≈ h[x : g] where f [x : g] denotes the result
of uniformly substituting g for the variable x in f .

The usual properties of the familiar consequence relations (as
reflexivity, transitivity, etc.) follow from the (LR) properties.

If ∆
∪
{f} is any collection of polynomial propositions, a derivation

of f from ∆, denoted by ∆ ⊢≈ f , is a finite sequence of (polynomial)
formulas that are either in ∆ or are obtained from previous terms
through PRC rules; f is said to be a theorem, denoted by ⊢≈ f , if
∅ ⊢≈ f .

Some concrete examples will be discussed below, and the following
fact will be essential:

THEOREM 1. Let p be a prime number; then there is an isomor-
phism between the set of all pn-valued truth-functions of arity ≤ m
and all the m-variable polynomials in GF(pn)[X].

Proof. By checking that each such polynomial defines a unique
pn-valued function in a field, and vice versa. �

The preceding theorem can be strengthened to non-deterministic
finite-valued functions as well (and this makes it possible to use
polynomial functions with extra-variables to treat non-truth functio-
nal logics such as paraconsistent logics and modal logics, (cf. [8]
and [1]). Moreover, for fixed pn, there exists a polynomial-time
transformation Π that outputs the corresponding polynomial of
GFpn [X] for each truth-function, as it can be computed by elementa-
ry linear algebra (systems of linear equations) over finite fields.

THEOREM 2. Let f be a polynomial in GFpn [X]. Then f ≈ c for
a constant c of GF (pn) if and only if f ⊢≈ c in PRC.

Proof. Since the fieldGF (pn) is constructed asGF (pn) = Zp[X]/ <
p(x) > (that is, the quotient of the ring of all polynomials with
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coefficients in Zp by the ring ideal < q(x) > generated by an
irreducible polynomial q(x)), application of the PRC procedures
to polynomials f in GFpn [X] obtains a class representative of f in
GFpn [X] modulo q(x) with minimum degree (note that the polynomi-
al rules always decrease degrees). If f ≈ c, then f is equivalent to
the constant polynomial c and a finite number of PRC steps will
end up with c. �

The above theorems guarantee a completeness theorem with
respect to PRC for pn-valued logics. Let L be a pn-valued logic
(for p a prime number) and let D be the set of distinguished truth-
values of L. Actually, easy constructions (all well-known in the
literature) obtain finite fields with 4, 8 and 9 elements (namely,
GF (22), GF (23) and GF (32)). Indeed, in the above indicated const-
ructionGFpn [X] = Zp[X]/ < q(x) >, x2+x+1 is the only irreducible
monic quadratic polynomial in Z2[x], which gives for GF (22) in a
unique way (this case is exemplified in more details for four-valued
logics in Section 2).

For the case of 8 truth-values: the irreducible cubics in Z2[X] are
just x3 + x + 1 and x3 + x2 + 1, and both define isomorphic finite
fields with 8 elements (viz., GF (23)). For the last case, concerning
9 truth-values, x2 + 1 , x2 + x + 2 and x2 + 2x + 2 are the only
irreducible monic quadratic polynomials in Z3[X], and all of them
produce isomorphic finite fields with 9 elements (viz., GF (32)).

We thus have a direct treatment of all finite-valued logics from 2
to 9 truth-values (with the exception of 6) in terms of polynomial
ring calculus, independent of which truth-values (or how many of
them) are taken as distinguished values. Since a 6-valued logic can
be embedded in Z7[X], this virtually covers all cases of finitely
many-valued logics with any pragmatic interest in the literature.

Moreover, since GF (pm) is a subfield of GF (pn) iff m divides n
(another well-known elementary fact about Galois fields), then of
course classical propositional logic can be entirely embedded into
four-valued logic, a possibility which can make a difference when
investigating complexity of proof procedures (cf. also Section 5).

Let At = {p1, p2, . . .} be a denumerable set of atomic sentences,
and let Σ = {Σn}n∈N be a propositional signature, where each Σn is
a set of connectives of arity n, which defines the set Con =

∪
n∈N Σn

be the set of connectives. The set of formulas of L is then defined
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as the freely generated algebra by At over Σ. Thus, pk ∈ L, for any
atomic sentence pk ∈ At, and ⊗(φ1, . . . , φm) ∈ L, for any m-ary
connective ⊗ ∈ Con, and any formulas φ1, . . . , φm ∈ L.

Given a usual matrix interpretation to L, which we call a semantics
Sem for L, denote by v the valuations from the formulas of L to
GF (pn); a canonical consequence relation 
 ⊆ ℘(L)× L associated
to Sem is defined by establishing that a formula φ ∈ L follows from
a set of formulas Γ ⊆ L whenever v(Γ) ∈ D implies that v(φ) ∈ D.

The above notion of consequence relation complies to what is
known as a Tarskian logic. We can also suppose with no loss of
generality that L is also compact, so Γ ⊆ L can be taken as finite.

THEOREM 3. Let Γ = {γ1, . . . , γn}, φ be a set of formulas of L;
Γ 
 φ iff there is an integer k and polynomials h1, . . . , hm ∈ F [X]

such that fk =
∑

1≤i≤n hi · gi, where f = Π(φ) − c, g1 = Π(γ1) −
d1, . . . , gn = Π(γn)− dn for truth-values d1, . . . , dn ∈ D and c ̸∈ D.

Proof. By the Nullstellensatz for arbitrary fields, Γ 
 φ iff the
polynomials f = Π(φ) − c, g1 = Π(γ1) − d1, . . . , gn = Π(γn) − dn
have a common zero. �

The previous theorem grants a refutation proof method to many-
valued logics based on the Nullstellensatz, in a way similar to the
mentioned Gröbner calculus. Cases of special interest arise when the
logic L is endowed with a connective, which we call ~, such that
the Metatheorem of Deduction holds for L. In this case, Γ, α 
 φ iff
Γ 
 ~(α,φ). If this is the case, the procedure can be iterated,and
in general Γ 
 φ iff there exists a formula ψ such that 
 ψ, where
ψ is construed from the formulas of Γ and the connective ~.

2 Example-cases: Post and  Lukasiewicz logics in
polynomial format

Although the idea of many-valued logics was present in the work
of Charles Peirce already in the first decade of the 20th century
(cf. [17]), Emil Post introduced in 1920 the first well-worked many-
valued logical systems almost simultaneously (but independently)
from  Lukasiewicz. The primitive operators negation ¬ and disjunc-
tion ∨ introduced by Post are related to the fundamental operators
of Principia Mathematica, and are defined as the following operations
over Zn, where n− 1 is the only distinguished truth-value: ¬(x) =
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x+ 1(mod n) and x∨ y = max{x, y}. Without any loss of generality
we can consider an isomorphic variant of Post’s system through the
following operations over Zn, where now 0 is the only distinguished
truth-value: ¬(x) = x + n − 1 and x ∨ y = min{x, y}. It is now
easy to compute, for each pn, two polynomials corresponding to
¬ and ∨. For example, for n = 3 the following polynomials over
Z3[X] represent ¬ and ∨: ¬(x) = x + 2 and x ∨ y = min{x, y} =
2x2y2 + 2x2y + 2xy2 + xy. Since any other formula in the many-
valued Post logic can be written in terms of ¬ and ∨ (i.e, they
form a functionally complete set of connectives) any other 3-valued
function in one or two variables can be written as composition of
these. A similar result holds for all pn-valued logics.

Since Post’s logics are functionally complete and the Deduction
Metatheorem holds for them, provability in pn-valued Post’s logics
can be directly treated via PRC proof theory. Here the polynomial
rules reduce to 3 · x ≈ 0 and x3 ≈ x, since we are dealing with
the simple case p = 3, n = 1 and PRC reduces to simplifying
polynomials in Z3[X].

 Lukasiewicz’s three-valued system L3 is sound and complete with
respect to the well-known matrices for → and ¬ (where 2,1,0 are
used instead of the more common 1, 1/2 and 0, and 0 is the only
designated truth-value). In polynomial form over the ring Z3[X] the
corresponding connectives are expressed by: x→ y = 2x(y+1)(xy+
y + 1) and ¬(x) = 2x.

Since  Lukasiewicz’s logic enjoys a form of Metatheorem of Deduc-
tion, the procedure also applies directly. As a simple example, x→
x = 2x(x+1)(x2+x+1) = 2x4+4x3+4x2+2x. Using the polynomial
rules 3 · x ≈ 0 and x3 ≈ x, we obtain immediately: x → x ≈
2x4+4x3+4x2+2x ≈ 2x2+x+x2+2x ≈ 3x2+3x ≈ 0. Hence, α→ α
is a theorem in the system L3. The method is obviously also useful
as a decision procedure (it is clear that any logic characterizable
through polynomial calculus are recursively decidable).

Analogous results hold for all pn-valued logics. As hinted in the
previous section, four-valued logics, for example, can be easily dealt
with by means of polynomials over GF (4) (notice that we cannot
use the ring Z4[X], which fails to be a unique factorization domain
and in this cannot represent all four-valued connectives: for instance
is is easy to see that a connective such as x ∨ y = max{x, y} is not
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representable as a polynomial in Z4[X]. The field GF (4) can be
defined (as previously remarked) as an extension field of GF (2) by
means of the primitive polynomial q(x) = x2 + x+ 1 of degree 2 in
Z2[X], and by taking the successive powers of the roots of p(x) to
represent the non-zero elements in GF (4 as {0, 1, a, a2 = a+ 1}, on
which addition and multiplication are defined as:

+ 0 1 a a2

0 0 1 a a2

1 1 0 a2 a

a a a2 0 1
a2 a2 a 1 0

· 0 1 a a2

0 0 0 0 0
1 0 1 a a2

a 0 a a2 1
a2 0 a2 1 a

Using polynomials with coefficients in GF (4) and computing ac-
cording to such tables, one can of course characterize any four-
valued logic in the literature (and even the ones not yet invented).

For the particular case n = 2, n-valued Post logic reduces to
classical propositional calculus. It is simpler to give a direct formula-
tion, translating the usual boolean connectives as follows: Let At =
{p1, p2, . . .} be the atomic sentences of PC, and ¬,∨,∧,→ the usual
connectives. The translation Π is set as follows:

1. Π(pi) := x1

2. Π(φ) := 1 + Π(φ)

3. Π(φ ∧ ψ) := Π(φ) ·Π(ψ)

4. Π(φ ∨ ψ) := Π(φ) ·Π(ψ) + Π(φ) + Π(ψ) + 1

5. Π(φ→ ψ) := Π(φ) ·Π(ψ) + Π(φ) + 1

The polynomial rules over Z2[X] in this case reduce to x+x ⊢≈ 0
and x ·x ⊢≈ x. As a consequence, φ is a PC-tautology iff Π(φ) ⊢≈ 1.
We thus obtain a promising method for checking the satisfiability
problem for many-valued logics (in particular for SAT), since the
reductions performed by the polynomial ring calculus might be
subexponential in the number of variables of a propositional formula.
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3 The heuristic stand: half-logics, quarter-logics and
the laws of form

Logicians should not overlook what poets have to say: a four-line
poem by Samuel Butler in the mid-19th century (cf. [5]) expresses
a philosophy of heuristics better than some treatises:

All the inventions that the world contains
Were not by reason first found out, nor brains
But pass for theirs, who had the luck to light
Upon them by mistake or oversight.

But how can heuristic insights be considered along with the act
of proving? Modern logicians virtually killed heuristics: indeed, the
contemporary notion of proof completely expels the role of discovery
and heuristics. Considering that problem solving and the heuristic
method have been emphasized by some notable mathematicians,
most of them Hungarians as George Pólya (famous references are
[21] and [22]), there is no principled reason heuristic methods could
not be shared by logicians. They were indeed shared by Greek
geometers and philosophers as Euclid (circa 325-270 BC), Pappus
(290-350) and Proclus (410-485), a tradition continued by Descartes
and Leibniz. Discovery in logic is of course completely independent
from whether there may be a logic of discovery1, and I argue here
that formal polynomials work in a quite remarkable way as a heuristic
tool in logic. Two examples are reviewed below: the discovery of
quarter-logics (as a generalization of half-logics) and the discovery
of an appropriate formalism to express some ideas on the so-called
“laws of form”.

Classical implication→ and negation ∼ are truth-functional con-
nectives completely characterized by the familiar two-valued valua-
tions v:

v(P→Q) = 1 iff v(P ) = 0 or v(Q) = 1 and v(∼P ) = 0 iff v(P ) =1

Non-truth-functional connectives, however, are abundant in the li-
terature. Béziau in [4] defined a partial (non-truth-functional) nega-
tion ¬1 characterized by:

v(¬1P ) = 0 if v(P ) = 1

1If there is, it would perhaps be an algebra of discovery rather than a logic
of discovery; incidentally, this was a topics I was strongly interested in my Ph.D
thesis, which I later decided to do in pure logic instead.
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Albeit its non-truth-functional character, the negation ¬1 is defined
via a process of bounded non-determinism in the sense that v(¬1P ) ∈
{0, 1} if v(P ) = 0, i.e., there are no truth-value gaps. As remarked,
every finite-valued defined by a bounded non-deterministic defini-
tion can be represented by polynomial functions over Galois fields
GFpn [X] with extra (hidden) variables (cf. [8]).

Due to its bounded non-truth functionality, ¬1P can is represent-
able as a simple polynomial over Z2[X] with an extra variable x.
Indeed, the “half ” negation ¬1P is computable by x · (p + 1) and
easily recovers classical negation with the help of →: in polynomial
format, P → ¬1P is computed as p · (x · (p + 1)) + p + 1 = p + 1,
but p+ 1 represents ∼.

This was noted in [4] with the suggestion that it could be regarded
as a certain “translation paradox” in the sense that PC can be
strongly translated within a certain subclassical logic K/2 (in the
language {→,¬1}). The translation τ in question is:

1. τ(P ) = P , for P atomic;

2. τ(A→ B) = τ(A)→ τ(B);

3. τ(∼ A) = A→ ¬1A.

Although this “phenomenon” deserved a paper by L. Humberstone
(cf. [19]), our polynomial computation shows that this is nothing
more than a mere consequence of function compositionality: ∼ be-
longs to the clone defined by → and ¬1. Indeed, additional “half-
logics” can be defined just by playing with polynomials, as for
instance:

v(¬2P ) = 1 if v(P ) = 0

In polynomial terms ¬2p is expressed by p · x + 1 (when p = 0,
¬2p = 1, but when p = 1, then ¬2p is undetermined)

Now consider a connective P ∗← Q semantically defined in the
polynomial form as p·(q+1); this expresses semantically the connec-
tive:

v(P ← Q) = 1 iff v(P ) = 1 and v(Q) = 0

It is easy to see that ¬2 and ← define classical negation ∼ by
¬2(P )

∗← P , computed as (p ·x+1) ·(p+1) = (p+1) ·p ·x+(p+1) =
p+ 1.
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Not only new half-logics, but also quarter-logics can be invented.
Consider a binary connective semantically defined in p and q by
x · (p+ 1) · q, corresponding to a non-truth-functional connective ⇀
whose valuation condition is:

v(P ⇀ Q) = 0 if v(P ) = 1 or v(Q) = 0

Consider a logic K/4 in the signature {→,⇀}.
This quarter logic recovers itself; indeed, classical negation ∼ can

be defined by:
P → (P ⇀ Q)

In polynomial format this is computed as p·(x·(p+1)·q)+p+1 =
p+ 1, hence full PC is recovered in the signature {→,⇀,∼}.

More quarter-logics can be defined, now departing from x ·p · (q+
1), corresponding to ⇁ whose clause for valuation is:

v(P ⇁ Q) = 0 if v(P ) = 0 or v(Q) = 1

Consider now K ′/4 in the signature {→,⇁}); classical negation
∼ is now definable by:

Q→ (P ⇁ Q)

and again full PC is recovered in {→,⇁,∼}.
It is not difficult to be convinced that there is a lot of other

“paradoxical” connectives: at least 16 binary connectives can be
defined as a basis for such “quarter” logics, and many more in other
arities. Exploring this aspect of non-truth-functional connectives is
more than performing a clever algebraic trick; it is a contribution
to understanding which are the laws of logical form.

Another interesting application of the expressivity of formal poly-
nomials as heuristic devices is in the analysis of the so-called “laws
of form”. In a booklet of 1969 (cf. [24]) George Spencer-Brown
attempted to formalize what he thought to be “the laws of form”
by means of a sort of exoteric calculus, praised by Bertrand Russell
as “a new calculus of great power and simplicity”. The idea, with
its proposal of starting from nothing and drawing a distinction, has
some connections with Brower’s “two-oneness”, which he considered
to be the basal intuition of mathematics. It has also some remarkable
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coincidences with C. Peirce’s “alpha-existential graphs”; indeed,
Peirce’s “streamer” is like Spencer Brown’s symbol k . It was proven
in [2] that part of Spencer-Brown’s system for the “laws of form”
(namely, his so-called “primary algebra”) is just Boolean algebra in
disguise. However, the same proof can be obtained in a much simpler
way by interpreting Spencer-Brown’s symbology as polynomials over
boolean rings, as shown in [6].

4 Modal logics in polynomial format

In [1] a polynomial ring calculus (PRC) for the familiar modal
logic S5 was designed, which permits to perform modal deductions
through polynomial handling. The paper also investigated the rela-
tionships among the PRC here defined, the algebraic semantics for
modal logics, equational logics and the Dijkstra-Scholten equational-
proof style. The method proposed can be easily extended to other
modal logics.

The definition of PRC for S5 can be easily adapted to other
modal logics: for the systems K, T, B and S4 it is only necessary
to adjust certain polynomial constraints corresponding to axioms in
the respective system. In particular, the polynomial representation
of provability for S4 can be immediately extended to intuitionist
logic Int, due to the well-known Gödel’s embedding of Int into S4.

These extensions can be done without much ado by considering
the well-known Lemmon-Scott axioms for modal logics. Moreover,
a relationship with their respective modal algebras can also be
obtained: new polynomial constraints will correspond to algebraic
conditions over operators.

A PRC for S4 has an extra interest, as this means that intuitionis-
tic logic can in principle be also treated in polynomial terms (bearing
in mind the well-known correspondence between S4 and the proposi-
tional intuitionistic calculus). Issues on decidability of modal logics
can also be treated through polynomials: this is, for instance, imme-
diate for S5, although for other calculi connections with the finite-
model property would have to be established.

The PRC for modal logics is also related to the non-determinis-
tic matrices, a generalization of ordinary multi-valued matrices, in
which the truth-value of a formula can be non-deterministically
assigned: actually, the methods in [1] constitute the first example
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of non-deterministic semantics for modal logics. It constitutes also
a particular case of possible-translations semantics (see, e.g. [11]) —
not by accident, since the latter are more expressive than the former,
as proven in [12] (Theorem 38 and the following discussion).

5 Expectations concerning heuristics and complexity

Boole’s “algebra of logic”, re-shaped by E. Schröder and later subsum-
ed in the propositional and predicate calculus (cf. [20]), is not coinci-
dent with Boolean algebra; indeed, the “algebra of logic” is more a
commutative ring with unity, partly because Boole’s disjunction was
exclusive (instead of contemporary exclusive “or”). The use of formal
polynomials in logic sharply expresses such a distinction between
Boole’s algebra and Boolean algebra. In this sense, the real “algebra
of logic” would be the one which approaches itself towards algebraic
geometry, as exemplified by our discussion above concerning the
Hilbert’s Nullstellensatz.

To gain full access to algebraic geometry, however, logics represent-
ed by infinite fields seem to be more appropriate than the ones
restricted to finite fields. So, for instance, as shown in [13], there are
some limitations for expressing certain metamathematical properties
of logics by means of polynomials over finite fields: Craig Interpola-
tion Lemma, for example, cannot be proven directly by manipulating
polynomials over finite fields. Some challenging open problems are
to represent infinite-valued  Lukasiewicz logics, full first-order logic
and higher-order logics by means of polynomials over GFpn (in such
cases,polynomials over the field of rational numbers Q seem to be
more adequate).

The ring GFpn [X] of polynomials with coefficients in the Galois
field of order pn, which is used in the polynomial ring calculus for
many-valued logics, paraconsistent logics and modal logics, share
strikingly similar properties with the commutative ring Z of the
integer numbers. Indeed, both are unique factorization domains, and
they have very accordant number theories: the prime numbers of Z
correspond to monic irreducible polynomials in GFpn [x], the ring of
polynomials in one variable x (several interesting consequences of
this similarity are discussed in [16]).

This makes the polynomial ring calculus a kind of abstract num-
ber theory, with promising consequences for logical consequence: as
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noted in [16]) (pages 28 and 29), irreducibility testing in GFpn [x]
seems to be more tractable than primality test in Z, and the problem
of factorization for polynomials seems to be, equally, more tractable
than factorization for integers. So there is hope that treating logics
by means of formal polynomials might lead to some new insights
regarding complexity of theorem-proving procedures.

Independently from issues on complexity and from any relevant
connections to algebraic geometry and to the problems found therein,
the polynomial formatting of logics has another tantalizing feature:
by using the powerful representation given by polynomials we not
only shape new proof methods, but we come upon one of the very
few heuristic artifacts in logic. In this direction, as well, there is
much to be explored.
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