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EFFECTS IN QUANTUM LOGIC
OF OBSERVABLES"

Abstract. In the paper a modal and bimodal extension of quantum logic of
observables QLO is proposed. The former allows to obtain the syntactic
counterpart of D.Mundici’s result on embedding of C*-algebra into an MV-
algebra while the latter has as its algebraic counterpart quantum MV-algebra
of R.Giumtini. The soundness and completeness of both extensions is proved
in respect to the set-theoretical semantics developed early for QLO.

1. Introduction

In [4] D.Mundici shown that every approximately dimensional C*-
algebra with lattice dimensional group can be embedded into a count-
able MV algebra. Since such an MV algebra is also a Lindenbaum
algebra of Lukasiewicz infinite-valued calculus L., (the notion of MV
algebra was introduced by C.C.Chang in order to provide an algebraic
proof of the completeness theorem for L) then this result would be
treated as a tool for considering properties of quantum systems in the
framework of L. Needless to say that from the physical point of view
in this case we ought to consider an elements of MV algebra as a class
of operators whose spectrum is contained in the real interval [0,1].

But the lack of developed interpretation of such operators forces us
to approach those as so-called effects of a Hilbert space which are
bounded linear operators such that for an every effect £ and for all
density operators D, 0 < Tr(DE) < 1 (Born probability). It was shown
by R.Giuntini [2] that the class of all effects of any Hilbert space turns
out to be an instance of an algebraic structure called quantum MV
algebras. Those retain some important properties of MV algebras,
while violating the crucial axiom of MV algebras: the so-called Luka-
siewicz axiom. Quantum MYV algebras represent non-idempotent exten-
sion of orthomodular lattices just as MV algebras represent non-idem-
potent extensions of Boolean algebras.

Thus, in case of transferring Mundici’s method onto quantum MV
algebra of effects we can interpret those as determining a kind of Born
probabilities for quantum observables represented by operators in Hil-
bert space. In fact, those probabilities would be considered as prob-
abilities for observables to have as the result of measurement a certain
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magnitude contained in the real line of numbers (as projectors in Hil-
bert space would be regarding as “yes-no” answering the same
question).

2. Quantum Logic of Observables

We obtain the syntactic version of Mundici’s result if we have
recourse to the so-called quantum logic of observables QLO [5]. QLO
is axiomatized by means of the following axiom schemes and the rules:
Ax1. 4= 4;

Ax2. 4 & ——4;

Ax3. ANBAC) < (AAB)AC;
Ax4. Av(BvC) < (AvB)VvC;
AXx5. ANBVC) < (AAB)V( ANO);
Ax6. ~(Av—A) = BAB;

Ax7. AN—A = —(Bv—B);

Ax8. 1nd < 4

AX9. Jod < —(Bv—B);

Ax10. /14 & 4;

Ax11. J(AAB) & JyBAA;

Ax12. J(AvB) & J,BVJ,A;
Ax13. —J,A=J,—A

Ax14. Jy1pd & JAVIpA;

Ax15. Jupd < JoJpA

Ax16. =[(AAB)V—(BAA) < (Av—A4)’A(Bv—B)*  (4* means ArA).

Rxl. A=B
Rx2. A=B
Jiud = JiuB
Rx3. A=B B=C
A=C
Rx4. A=B C=D
AvC = BvD
Rx5. AnA=B CAC=D
(AnA) A (CAC) = BAD

Here A = B means (4,B)eL, where L is some logics, truth-value of
JouA is calculated as the result of multiplying truth-value of 4 on a
being a real number.

Let I' be a non-empty set of wff. A wif 4 is said to be QLO-deriv-
able from I', '=A, if there exist By,...,B,€ I such that
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(a) either Bv...vB,=4;

(b) or (BiA...AB)A(BuA...ABy) =4,

(c)orJuiBi=A4,i=1,2,...,n.
If 4 is QLO-derivable from —(4v—4) then 4 is QLO-derivable or is a
QLO—theorem which writes =A. I' is QLO—consistent if there is at
least one wff not QLO-derivable from I', and QLO—inconsistent oth-
erwise (it can be shown that I' is QLO-consistent iff for no 4 do we
have both '=4 and '=—4). I' is QLO-ful/ iff it is QLO—consistent
and closed under v, A, J and QLO—derivability, i.e. iff

(1) for some wff 4, not ['=4;

(2)if Ael’ and A= B, then Bel:

(3) 4,Bel implies AAB, AvBeT

(4) Al implies Jiyd el

If xc @ (where @ is a set of wff) is QLO—full then
(1) x=A iff Aex;

(i1) —(4v—A)ex, for all wif A4.

QLO-full sets and QLO-derivability are linking with the following
version of Lindenbaum’s Lemma:

I'=4 iff A belongs to QLO-full extension of I'.

It is proved that if x is QLO-full and —4¢#x, then there exists a
QLO-full set y such that Ay, and for all B, either —~B¢#x or Bgy.

QLO have some peculiarities featuring quantum orthologic. Both in
QLO and quantum orthologic the proof of Lindenbaum's Lemma does
not require such power tools as, for example, Zorn’s Lemma, which
was in case of orthologic regarded as unprecedented for logical
systems. As to the QLO-full sets, then from topological point of view
they are, in fact, proper filters and not the ultrafilters. This, in turn,
leads that for both quantum orthologic and QLO there is not need in
some version of an axiom of choice which is required to prove an
existence of ultrafilters.

It is easy to see that an algebra corresponding to QLO be an algebra
of observables satisfying the axioms of algebraic approach in [1]. If we
define an equivalency of formulas 4 and B, 4 ~ B as + A < B then
denoting the set A/_as [4] we obtain

[A]+[B] = [4vB],

[Alo[B] = [41B],

—[A]= [=4], 0 = [~(Av=4)],

1=T11, afA] = [JuA].

A structure F= (F,+,0,—,0,0,1) (where FF = {P/.: P is a formula},
aeR) is an algebra (of observables) while E = (F,+,-,a,0) be a vector
(linear) space, 0 is a unit relative to +, and / is a unit relative to o.
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3. Modal Quantum Logic of Effects

Let us modify our formulation of QLO by replacing Ax1 with
Ax1'. =(AvB) < —4Av—B
The following theorems of QLO will be used in the sequel:
Bx1. =(4v—4) vB < B

It is easy to see that this modification does not lead to any change
of QLO. As to the Ax1 then 4 = A can be proved from Ax2 by means
of Rx3. Bx1 is proved by means of Ax9, Ax10, Ax14.

To introduce effects into QLO we enrich the language of QLO with
a unary operator Q and axiomatics of QLO with the following axiom
schemes and the rule:

Ax17. QA< QQA
Ax18. Q-4 < 1v—Q4
Ax19.Q1 & 1

Ax20. Q(AVB) < (QAVQB)
Ax21. ~(Bv—B) = Q4 = 1
Ax22. 1 & 1vQ4

Rx6. A=B
Q4= QB

Let us denote the system QLO + {Ax17-Ax23, Rx6} as QLO-MV
(with Ax1"). In order to prove that QLO-MYV really describes the effects
let us firstly recall the algebraic structure responsible for those.
According to P.Mangani [3] MV algebras can be defined in the fol-
lowing way:

(MV1) (a®b) ®c = a®(b ®c)

(MV2) a®0=a

(MV3) a®b = b®a

(MV4) a®1 =1

(MVS) (a*)*=a

(MV6) 0*=1

(MVT) a®a* =1

(MV8) (a*®@b)*®b = (a®b*)*®a (Lukasiewicz axiom)

As in QLO we define [4] @ [B] = [QAVvQAB] and [A]* = [-QA].
Theorem 3.1. A structure F = (F, ®,*,0,1) where F = {P/_: P is a
formula prefixed with Q}. 0= [—(4Av—A4)], 1 =[1] is an MV algebra.

Proof. Associativity of @ for (MV1) follows from the definition of
@ and associativity of v in QLO as well as commutativity for (MV3).
(MV2) is fulfilled since [A]®0 is defined by QAVQ—(Av—4) <
Q(Av—(4Av—A4)) and then by Bx1 it will be equivalent to Q4 which
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under the definition of P gives us [4]. In case of (MV4) we have
QA4AvQ1l < QA4v1 by Ax19. As to (MV5) then [A]** is determined by
Q—Q—4 and by Ax18, Ax17 it gives us Q—Q—4 < 1v—-Q—-4 &
1v—(Q—4) < 1v—1vQ4. But we obtain 1v—1 < ——=lv———-l &
—(=1v—=l) & —(1v—1) with the help of Ax2, Ax1’. So, by Bx1 we
obtain (Iv—1)v Q4 < Q4. (MV6) follows from Q——(Av—4) <
Q(Av—4) © QAvQ—4 < QAvIiv—-Q4< 1.

In order to obtain (MV7) we have QAvQ—4 by the definition and
Ax17. Then like in case of (MV6) we get QAvQ—4 & 1.

In case of Lukasiewicz axiom for the left part we have
Q—(Q—4vQB)vQAB by the definitions and Ax17. Now by Ax18 and
Ax17 we obtain Q—(Q—-4vQB)VQB & Q-Q-4vQ-QBvVQB &
1v—=Q—-4vQ-QBVvQB < 1v—(1v—-Q4)v1v—=QBVvQB. By Ax1’, Ax2,
Ax1’ we have 1v—(1v—=QA4)vIv—-QBvQB < QA4v1 < 1. For the right
part we likewise obtain Q—(Q—-BvQ4)vQ4 < QBv1 < 1 and this
determines that L.ukasiewicz axiom will be satisfied. [

In the sequel under wff we always mean a wff prefixed with Q.

Definition 3.2. Let " be a non-empty set of wff. A wff 4 is said to be
QLO-MV-derivable from I', =4, if there exist By,...,B,€ I such that

(a) either Byv...vB,=4;

(b) or (BiA...ABYIA(BuA...AB)) =4,

(c)or JouBi=A,i=12,...,n;

(d)orQB=4,i=12,....n.
If A is QLO-MV-derivable from 1 then 4 is QLO-MV-derivable or is a
QLO-MV-theorem which writes =A. I' is QLO-MV-consistent if there
is at least one wff not QLO-MV-derivable from I', and QLO-MV-
inconsistent otherwise (it can be shown that I' is QLO-MV-consistent
iff for no 4 do we have both '=4 and '=Q—-4). I" is QLO-MV-full iff
it is QLO-MV-consistent and closed under v, A, J, Q and QLO-MV-
derivability, i.e. iff

(1) for some wff 4, not '=4;

(2)if Ael’ and A=B, then Bel":

(3) A,Bel implies AAB, AvBeT;

(4) A<l implies JyAd €l

(5) Al implies QA4 el
Lemma 3.3. If xc® (where @ is a set of wff) is QLO-MV-full, then

1) x=>A iff Aex;

(i1) Q—(4v—A)ex, for all wifs A prefixed with Q.

Proof. (i) Since in QLO-MV A=A, sufficiency follows from the
definition of QLO-MV-deivability. Necessity follows from 3.2(2), (3),

4), ().
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(i) By definition x is non-empty, thus there exists Bex. But by
3.2(4) JoBex, so by Ax9and 3.2(2) we have —(4v—A)ex. The result
follows under Ax8 and 3.2(2). [

QLO-MV-full sets and QLO-MV-derivability are connected with
the following version of Lindenbaum’s Lemma :

Theorem 3.4. T=A4 iff A belongs to every QLO-MV-full extension of T

Proof. If T'=A4 then there are B,...,B,€I' such that either
Byv...vB,=A4 or (BiA...AB)NBuA...AB1) =4, or Jju B=A or QB=4
(1 £i < n). If x is QLO-MV-full and I'c x, then By,...,B,ex. Applying
3.2(3),(4),(5) and then 3.2(2), we obtain 4 ex.

The other way round, suppose 4 is not QLO-MV-derivable from I
We put x = {B: '=B}. By Axl we have I'c x, and by hypothesis 4 ¢x.
The proof will be accomplished if we can show that x is QLO-MV-full.
Suppose Bex and B=C, then there exist By,...,B,€l" such that either
Byv..vB,=B, or (BiA..ABIABuA...AB)) =B, or J|ai‘Bl-:>B, or
QB=A4 (1 £i < n). So by Rx3 we obtain either Bv...vB,=C, or
(BiA...ABy) A (BuA...ABy) =C, or J|ai‘Bl-:>C, or QB=4, hence, '=C,
re. C ex.

On the other side, if B,Cex, then there exist By,...,B,,Ci,...,C,el’,
such that Byv...vB,=B and C,v...vC,=C. Then by Rx4 we obtain
Biv..vB,NvCiv.. vC,=BvC. So we have '=Bv(C and thus BvCex.

Furthermore, if Bex, then there exists B eI’ such that J,,1B =B. But
by Rx2 JpJuB=JpB and by Ax15 we obtain Jg, B =JgB, thus,
F:}J‘WBEX.

Again, let B,Cex. Then there exist By,...,B,, Ci,...,C, €l such that
(BIA...ABIABuA...AB))=B and (CiA...ACHA(CoA...AC)) =C. But
then by Rx5 we obtain (BiA...AB,ACIA.. . ACHA(CoA. . .ACIABA
...AB1) = BAC. Hence, '=BAC and BACEex.

If Bex, then there exists B’el’ such that QB =B. Since by Rx6
QQB’=QB then under Ax17 we have QB’=QB. Thus, [=QBex.

This shows that x is closed under QLO-MV-derivability, conjunc-
tion, disjunction, J- and Q-operators. Since A¢x then A4 is not QLO-
MYV-derivable from x, therefore x is QLO-MV-consistent. []

Theorem 3.5. If x is QLO-MV-full and Q—A¢&x, then there exists QLO-
MV-full set y such that A<y, and for all B, either Q—Bgx or Bey.

Proof. Let y = {B: A=B}. By Ax1 Aey. Now let —=Bex. Then Bgy,
or else A=B, whence —B = —4 by Rx1, and so, in turn, by Rx6 and by
3.2(2), Q—Aex contrary to hypothesis. By 3.2(ii)) we have
Q—(4Av—A4)ex. According to what we just proved, it follows that
Av—Ag¢y. Proceeding in a similar manner to 3.4 we can show that y is
closed under v,A;J,Q and QLO-MV-derivability. Then since 4v—4 is
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not QLO-MV-derivable from y, i.e. y is QLO-MV-consistent, y be
QLO-MV-full as required. []

Thus, in turn, for QLO-MYV there is also not need in some version
of an axiom of choice which is required to prove an existence of
ultrafilters.

4. Semantics of QLO-MV

Since our logic is an extension of QLO then we adduce main defi-
nitions of QLO-semantics modifying them as may be necessary for
QLO-MV.

Definition 4.1. QLO-MV-model is a 4-tuple M = (X, 1 ,&,v), where

(a) X is a non-empty set;
(b) 1 is an orthogonality relation on X;
(©) & is a non-empty collection of L -closed subsets of X closed

under set-theoretic intersection and the operation * (Y* is
defined as {x: xLly});

(d) v is a function assigning to each propositional variable and
formula of QLO-MV recursively in every point (every
element) of X a real number, i.e. v: (SU®) x X >R where
S is a set of propositional variables and @ is a set of wffs.

Denoting the set {xeX: v(4,x) = a} as ||4]|, we define recursively the
value of a wff in a QLO-MV-model as follows:

(D) llpdla = {xeX: v(pyx) = a} €E;

(2) [[AvB|l. = {xeX: xe|l4|l,N||B|l. & a=b +c};

(3) [AAB|l. = {xeX: xe|l4]lsN||B|l. & a = bc};

@) -4l = xeX: xL||A]|.. & V(=4,x) = a };

(5) WoAlla = {xeX: xe|ld|ly & a = ab};

(6) |1]l; =X 1.€. v(1,x) =1 for all xe.X;

(7) |Q4]l, = {xeX: x€||A||y & a = q(b)} where ¢g: v — [0,1] such

that
D) g(g(v(4)) = g((4));
(i) g((=4))=1-q((A));
(i) g(v(1)) =1 and g(W(—(Av—4)) = 0;
(iv) g(W(Q(4vB))) = max {g(v(Q4)) + g(W(QB)),1}.

If ' is a non-empty set of wffs then we say that I" implies A at x in
M, M: T |=, 4 iff VBeI'(v(B.x) < W(4,x)), T M-implies 4, M: T'|= 4 iff
either 3Bel'(x¢||B||.), i.e. when B is not verified at x (verification but
not truthfulness since we deal with many-valued logical matrix), or I'
implies 4 at all x in M. If we define 3 = (X,1,§) be QLO-MV-frame
then I 3-implies 4 iff 3: T’ I= 4 for all QLO-MV-models M on 3. If [5)
is a class of QLO-MV-frames then I' g@-implies 4, g: 3. |= 4 iff J:
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['|= A4 for all Sep. A class @ is said to determine QLO iff for all
ABe®, A=Biff p: A= B. p strongly determines QLO iff for all T,A,
=4 iff p: T = A.

If we define a range of values of a formula 4 as ||4|| = U .cr |4l
then extending this definition on 4.1(1)-(7) hereafter we denote as ||p,],
lAVB|, |AAB||, [[=A]], Modll, [|1]l, [|QA]| the ranges of respective formu-
las while ||4]|) means an arbitrary value of respective formula.

Lemma 4.2. For any QLO-MV-model M and any A€ ®, ||4]|.)€&.
Proof. By induction on the length of 4, exploiting 4.1. []

Theorem 4.3. (Soundness of QLO-MV). =4 if ©: ' |= 4, where © is
a class of all QLO-MV-frames.

Proof. The proof, by induction on QLO-MV-derivability, proceeds
by showing that the result holds for all Ax1-Ax22 and is preserved by
application of Rx1-Rx6. We consider only the less obvious cases.

Ax2. Let x€||A||,. Then if ye||—4|l,, by 4.1(4) yLlx and hence
(symmetry) xLy. 4.1(4) again gives x€||——A4||,.

Now let xe||—=—4||,. Then ye|[—-4||,, only if xLy, i.e. yL||4]||, only if
xLly. But||4], is L-closed by 4.2 and thus x€||4]|,.

Ax6. It is easy to make sure that v(—(4v—A4),x) = 0 at any point
xeX and likewise w(Av—4,x) = 0. But if xe€l[-(4v—4)|lo, then
yel|ldv—A||y just in case of xLy. By 4.1(2) ye||4|sN||—4||. and b + ¢ = 0,
i.e. ¢ = —b. But then by 4.1(4) yLly contrary to the irreflexivity of L.
Hence, there is no y in any M for which we have y L ||4v—A4]|,, whence it
follows by the definition that xe||—(4v—4)||o for any x. Besides, for all
B, by 4.1(3), v(BAB,x) 2 0.

Ax7. Let x€||IAA||,. Then ye||1]in||4]|l, by 4.1(3) and v(1A4,x) =
v(1,x) o v(4,x). But v(1,x) = 1 at any point x€X in virtue of the defini-
tion of (see 4.1(6)). So v(1A4,x) = v(4,x) and thus M: 14 |=4 and M:
A= 124 for any 4.

Ax11. Let xe||Jo(AAB)||,- Then by 4.1(5) xe||AAB||, and a= ab. By
4.1(5) xe||d||.N||Blls and b = cd. Hence, a = adc. But by 4.1(5)
x€|Jodllac[Blls and by 5.3.3(3) x€|ud AB||ca=a-

Ax13. Let xe€l||4|l,. Then by 4.1(5) xe€|lJ,4|l«. and by 4.1(4)
V€ |lJoA||.oq just in case of xLy. But then ye||—4||, because of x Ly, and
by 4.1(5) y€|JoAll-ca-

Ax17. Let x€||QQA|l,. Then by 4.1(7) x€||QA|, and a = g(b).
Again, by 4.1(7) this implies x€||4||. and b = g(c). We have g(b) =
q(q(c)) = q(c) by the property of ¢ and thus a = g(c).

Ax18. Let x€||4]|s. Then by 4.1(4) ye||—A||., only if xLy, i.e. yL||A]];
only if x_Ly.Furthemore, by 4.1(7) y€||Q—A4||, and a = 1 — ¢g(b) accord-
ing to the properties of g. But it is easy to check that the result will be
the same for the right side of Ax18, i.e. ye||l1v—QA||, and a = 1-g(b).
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Rx1. Suppose M: 4 |= B and let xe||—B|.,. Then yel|/4|, only if
veE|B|l. (by inductive hypothesis), only if xLly. This shows that
x|l

The rest is obvious. [

Definition 4.4. Let L be a modal quantum logic of effects. The
canonical QLO-MV-model of L is the structure My = (X, 1;,&1,v),
where:
(1)  XpL={xc ®: xis a QLO-MV-full set};
(2)  xlpyiffthere is a wff 4 such that Q—4ex, Aey;
(3)  &=1{l4]": 4e® }, where |4|" = {xeX,: dex};
(4) VL: (SU(D) x X, —> R.

Denoting {xeXi: v(4,x) = a} as ||4]|", we come to the definition of
the value of formula and ranges of valuation in canonical model My
analogously to 4.1(1)-(7).

Lemma4.5. 3 = (X1, L1.EL,v) is a QLO-MV-frame.

Proof. Let xeX;. Then for any 4 neither Q—4,4€x nor x is QLO-
MV-inconsistent (by Ax7). Hence, x L x does not take place. If x1y,
then for some wff 4 we have Q—A4ex, A<y. By means of Ax2 we come
to the conclusion that Q—Bey, Bex, where B = Q—A4. Thus x1,;y and
1. is an orthogonality relation. To check whether ||4|[* be L -closed
suppose that x¢||4||", i.e. Agx. By Ax2 ——A4¢x and so by 3.5 there is
yeX, such that x.;y fails and —4€y. Meanwhile if ze||4||" then dez
and, hence, yLz. Thus, yL||l4||" as it was required. Clearly, & will be
closed under intersection (by virtue of properties QLO-MV-derivability
and QLO-MV-fullness). [

Theorem 4.6. (Fundamental theorem for QLO-MV). For all A and all
xeX, xe||d|" iff dex.

Proof. By induction on the length of 4. In case of 4 = BVvC,
A=BAC, A =J,B and 4 = QB it is easy to see that B, Cex follows from
BvC, BAC, J,B, QAex. It will suffice to use 4.1(2),(3),(5),(7). Conver-
sion follows from 3.2(3),(4),(5).

Suppose that 4 = —B and for B the theorem is true. Let Q—Bex. If
Yv€||B||", then by inductive hypothesis Bey and hence xL;y. By 4.1(4)
it follows that xe||B||".,. Again, if Q—Bgx, then according to 3.5 there
is yeXy such that Bey and thus by inductive hypothesis ye||B|", but
xLyy fails. By 4.1(4) we come to the conclusion that x¢||B||".). [

Corollary 4.7.T=A4 iff M_.T |= 4.

Proof. If T'=A4 then there are B,...,B,€I' such that either
Byv...vB,=A4 or (BiA...AB)A(BuA...AB)=A, or J‘ai‘Bi:>A, or QB;=A4
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(1 <i<n). Ifxe|B|", for all BeT, then by 4.6 By,...,.B,ex. By 4.1(2)-
(5) it follows that A ex and thus xe||4|/"..

The other way round, if 4 is not QLO-MV-derivable from I, then
by 3.4 there exists xeXL such that I'c x and 4 ¢x. Then by 4.6 xe||B||",
for all BeT, but x¢||4|/".). [

Theorem 4.8. T=4 iff 3.:T = 4.

Proof Let M be an arbitrary QLO MV- model on 3. For every
i<w, |p|Me&, there 1sB such that ||p;|™ o= IBi"o (1B{", is defined as in
4.4) and |Bj", = ||Bil"- For any wif C let C”is the result of unlformly
replacing each p;, occurring in C, with B,. Clearly, there are in I" such
Ay,...,A, that either 4,v...v4,=A4 or (AiA... AMAINAN...AA1)=A, or
Jio, A=A, or QB=4 (1 < z < n) and so we have 4/v...v4, =A "’ etc.
Then by 4.7 either Mi: A9v.. vA’|— A% or M: (A9A...A4%) A
(A4A...AA%) =47 or ML Jwid IV\J\_ A% or M: Q4= 4’ Buta simple
induction shows that iaM=c| ™ and so either M: A;v...vA, |= 4, or
Mi: (AiA. . AAIAAA.. AA%' A, or Mi: Jg4: = 4, or My: QA| A
whence it follows that M: T |= A. Slnce this holds for all models M on
31, we conclude Jp: I'[= 4. [

Corollary 4.9. (Strong completeness for QLO-MV). ©: T'|= 4 only if
I'= A.

Proof. Since by 4.5 3t is QLO-MV-frame, then ® contains I as
its element. The rest is obvious. [

Thus corollary 4.9 shows that QLO-MYV is strongly determined by
the class of all QLO-MV-frames.

5. Bimodal Quantum Logic of Effects

Regarding effects of a Hilbert space as bounded linear operators £
such that for all density operators D, 0 < Tr(DE) < 1, we can define
over the class E(H) of all effects a partial ordering relation < in the
following way [2, p.397]. For any E,HeE(H):

E < H iff for all density operators D: Tr(DE) < Tr(DF).

The class of all effects coincides with the class of all bounded linear
operators between 0 and I. Clearly, E(H) contains the class of all A/
(with A€[0,1]) where for any state vector peH (A1)¢ := Ap. Now we
define for any E,HeE(H):

(E+F ifE+FeE(H)

E®F =1

L7, otherwise
where + the usual operator-sum,
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E*=1-F.
It is easy to see that
E@F=E+FiffE+F< 1.

Likewise one can easily check that the structure E(H) = (E(H),®,*, 7,0)
violates Lukasiewicz axiom of MV-algebra. Actually, let us consider
two non-trivial effects £,/ such that it’s not the case that £ < F and it’s
not the case that /' < E. Then, by definition of @ we have £ @ F* = |
and F® E*=1. Hence, (E*®@ F*@ F=0@F=F#E=0DE=(E®
F*)* @ E. Thus, Lukasiewicz axiom is violated in the structure E(H).
As it was mentioned above R.Giuntini [2] showed that the class of
all effects (determines by Born probability) of any Hilbert space turns
out to be an instance of an algebraic structure called quantum MV
algebra (QMV algebra). The latter is a structure M = (M, &,*,1,0)
where M is non-empty set, 0 and 1 are constant elements of M, @ is a
binary operation and * is a unary operation satisfying the following
axioms (where a®b = (a*® b*)*, arb = (a®b*)®b and allb =
(a®b*)DD):
(OMV1) (a®b) ®c = a®(bDc)
(OMV2) a®0=a
(OMV3) a®b = b®Da
(OMV4) a®l =1
(OMV5) (a*)*=a
(OMV6) 0* =1
(OMVT) a®a* =1
(OMV8) all(bMa)=a
(OMV9) (anb)ric = (amb)ri(bric)
(OMV10) a® (bM(a®c)*) = (aDb)M(a® (a Bc)*)
(OMV11) a® (a*Mb) = a®b
(OMV12) a®(a*®b) LI(b*®a) =1
It seems possible to yield logic of effects in QLO framework corre-
sponding quantum MYV algebra. To this end we will enrich the language
of QLO with the help of a binary modal operator © and unary modal
operator * and enlarge the list of QLO axiom with the following
inference rules:
Rx7. (Cv=0)=4=1 —(Cv-O)=B=1 AvB=1

A®B < AvB
Rx8. 1= A®B
1 < A®B
Rx9. ~(Av—4) =>4 =1
v -4 < 4*
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(the double line means an inference in both directions).

Let us denote a system QLO + {Rx7-Rx9} as QLO-QMV (with
Ax1'). As in QLO we define [4] @ [B] = [A®B] and [4]* = [4*].
Theorem 5.1. 4 structure F = (F, ®,*%,0,1) where F = {P/_: P is a
formula and —(Av—A4) = P = 1}, 0 = [=(4Av—4)], 1 = [1], npedcmas-
ssiem coboit QMV anzebpy.

Proof. It is easy to see that satisfiability of (OMV'1) and (OMV?3) is
a consequence of associativity and commutativity of v. (OMV2) will
take place in virtue of Bx2. We have (QOMV4) because from
—(4Av—4)= B (by Rx7) one get —~(4v—4)®1 = B@1 (by Rx4), and
since by Bxl —(4Av—4)®@1<1 then by Rx8 1 <& B®1. In case of
(OMV5) by Rx11 we have 1v —4 < A*, then again implementing Rx9
we obtain 1v—(lv —4) < A**. But by Bx2 this reduces to 1v—lv
—|—|A) @A**, which in view of 1v—1 © ——lv———l & —|(—|1\/—|—|1)
< —(1v—l) (by Ax2, Ax1’) and Ax2, Ax1’ reduces, in turn, to 4 <
A**. Analogous manipulations allow to ascertain the satisfiability of
(OMV6) and (OMV'7).

In order to check the satisfiability of the remainder axioms we
define A®B < (4*® B*)* < AvBv—l,

A®B& (A*® B*)*,

ANB < (A®B*)®B and ALB < (A®B*)®B.

Moreover, we obtain that

(4, if A =B (4, if B=4
ANB < 1 AUB <
[B, otherwise LB, otherwise

Actually, by the definition ANB < (A®B*)®B < (ADB*)vBv—l. If
A=B then A®B*=B®B*<1 and by virtue of Rx7 and Rx9
A®B*<=Av—Bvl, and thus AMB <A. Otherwise by Rx11 A®B*<1
and ANB <B.

Further, by the definition we have ALB < (A®B*)®B. If B=4,
then B&B*=A®B*, which leads to —(Bv—B) =A4A®B*. This gives us
an opportunity to exploit Rx7 for calculating (A®B*)®B, which gives
(ARB*)®B < (A®B*)VB & AvB*VvB v—l < Aviv-BvBv—l1& A.
Otherwise we get AQB* = —(Bv—B). But by Rx7 we obtain that from
A®B=—(Bv—B) it follows A®B<—(Bv—B), and thus
A®B*<—(Bv—B) and (A®B*) @ B < B.

In case of (QMV8) if A=B then ALI(BMA)<> ALB<A. If it is not
the case that A= B, then ALI(BMA)}= ALUASA.

For (OMV9) we need that (ANB)NC < (ANB)(BrC). Two cases
are possible:

1) B=C,
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2) it is not the case that B =C.
Case 1). If A=B then by virtue Rx3 A=C. Then (ANB)NC
S ANCEAANBS (ANB)M(BNC). If it is not the case that 4=B,
then (AMB)M(BMNC) < BMNB < B <<BNC < (ANB)nc.
Case 2). Since it is not the case that B =C, then we get BrC <C.
Hence, (ANB)N(BMC) <(A4nB)ncC.

In order that (OMV10) is satisfied we need A®(BMNADC)*) <
(ADB)N(AD (ADC)*). Two cases are possible:

1) A®Ce1,

2) it is not the case that AOC& 1.
Case 1). ADBMN(ADC)*) < AD(BM—(Av—A4)) <A and (ADB)N(AD
(ADC)*) S(ABB)M(A®—(Av—-A4)) < (ADB) @ A*)®A< (BOUA @
B*))®A< (B D 1))®4< A.
Case 2) has two subcases:

a) B=>(ADC)*,

b) it is not the case that B = (A®C)*.
Subcase a). By hypothesis, A®(BM(ADC)*)<=>ADB and (ADB)MN(AD
(ADO)*) & (ABB)NAD (AvC)*). If (AB(AvC)*) <1 then we suc-
ceed. Therefore we can suppose that (AD(AvC)*) <1 is not the case.
Then (AD(AVC)*) < (Av(AvCO)*) < C*. Thus (ADB)N(AD (AvC)*)
< (A®B)NC*. By hypothesis, B=(A4®C)* < 1v—4v—-C, hence,
AvB=C#*. Finally, (A®B)NC*<A®DB.

Subcase b). By hypothesis, we have that A®BMADC)*)
S ABBN(AVO)*) & AB(AVO)* & Av(AvO)* < C*. Now, (ADB)
MNA® (AD0)*) < (ADB)MC*. By hypothesis, it is not the case that B
= (ADCO)*. Then it is not the case that C = (A®B)*, hence it is not the
case that (A®B) =C*. Thus, (A®B)NC* & C*.

Cases of (OMV11) and (OMV12) are easily verified. []

In the sequel under wff we always mean wff P, for which —(4v—4)
= P = lis true.

Definition 5.2. Let I" be a non-empty set of wffs. A wff 4 is said to be
QLO-QMV-derivable from I', =4, if A is QLO-derivable from I' and
there exist By,...,B,e I', such that

(a) Bi®...®B,=A.
The notions of QLO-QMV-derivability, QLO-QMV-consistency etc.
are defined in the same way as in case of QLO-MV (it can be shown
that I" is QLO-QMV-consistent iff for no 4 do we have both '=4 and
I'=4%). T is QLO-QMV-full iff it is QLO-full and 4,Bel’ implies
ADBel.
Lemma 5.3. If xc® (where @ is a set of wff) is QLO-OMV-full, then

(D x=A iff Aex;

2) lex for all wif A.
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Proof. (ii) By definition x is non-empty, thus there exists Bex. But
by 5.2 JyBex, so by Ax9 and 3.2(2) we have —(4v—A4)ex. But since
for wff P always will be true that ~(4v—4) = P = 1, then by 5.2 we
obtain the desired result. [

QLO-QMV-full sets and QLO-QMV-derivability are connected
with the following version of Lindenbaum’s Lemma :

Theorem 5.4. =4 iff A belongs to every QLO-QMV-full extension of T

Proof. We need verify only the cases of B/®...®B,=4 and
B®Cex. [

Theorem 5.5. If x is QLO-OMV-full and A* ¢x, then there exists QLO-
OMV-full set y such that Acy and for all B, either B* ¢x or B¢y.

Proof. Let y = {B: A=B}. By Axl Aey. Now let B*ex, that
implies —Bex by Rx9. Then Bey, or else A=B and —-B = —4 by Rx1,
—A4ex and then 4*ex contrary to hypothesis. Further, by 5.3 we have
lex. According to what we just proved, by Rx9 we obtain that
Iv—1g¢y. Proceeding in a similar manner to 5.4 we can show that y is
closed under QLO- and QLO-QMV-derivability. Then since 1v—1 is
not QLO-QMV-derivable from y, i.e. y is QLO-QMV-consistent, y be
QLO-QMV-full as required. [

6. Semantics of QLO-QMV

Since our system is an extension of QLO then for its description we
will exploit the definitions of QLO-semantics modifying them as
required to convey specificity of QLO-QMV.

Definition 6.1. QLO-QMV-models are QLO-models enriched with the
following two points in recursive definition of the value of wft:

(1) [4®Bl|, = {xeX: xe|[4]sn|B. & a=min(1b + c)};

(2) [|[4*]|. = {xeX: xL|A|1-« & V(4*,x)=1-a }.

Lemma 6.2. For any QLO-QMV-model M and any A€®, |4 €&.

Proof. By induction on the length of 4, exploiting 6.1. [

Theorem 6.3. (Soundness of QLO-MV). =4 if ©: ' |= 4, where © is
a class of all QLO-QMYV-frames.

Proof. The proof, by induction on QLO-QMV-derivability, pro-
ceeds by showing that the result holds for all Ax1-Ax16 and is pre-
served by application of Rx1-Rx5, Rx7-Rx9. We consider only the
cases of Rx7-Rx9 (accounting of the proof for QLO).

Rx7. By hypothesis, M:—(Cv—C) =4, M:4 =1, M:~(Cv—C) |=B,
M:B =1, M:AvB |=1. According to the definition M:~(Cv—C) =4 iff
v(=(Cv—=C),x) £ v(4,x), i.e. 0 < v(4,x), and M:4 =1 iff w(4,x) < v(1,x),
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i.e. v(4,x)<1. The same is true for B. Besides, we have v(4vB,x) <
v(1,x). Then by 4.1(2), 6.2(1) we obtain (AvB,x) = v(4,x) + W(B,x) =
v(ADB,x). In the reverse direction the proof is obvious.

Rx8. By hypothesis, M:1 I=A®B. Then we have M:1|=A4®B iff
1<v(4DB,x). But since v(A®B,x) = min(1,v(4,x) + v(B,x)), then, clearly,
1 = v(ADB,x).

Rx9. Let M:—~(Cv—C) |=4, M:4 |= 1. Then M:~(Cv—C) [=4 iff 0<
W(4,x), and M:4 |=,1 iff @ = v(4,x) < 1. Further, ye|[—4||, only if xLy.
By 4.1(2) we get ye||lv—A||. iff ye||1||iN||—4]||. and ¢ = 1 — a. But by
6.2(2) we have ye||4*||.. O
Definition 6.4. The canonical QLO-QMV-model of L (bimodal
quantum logic of effects) is the structure My = (X1, 11,&,vr) where:

(1) XL={xc d:xisa QLO-QMV-full set};
(2)  xlpyiffthere is a wff 4 such that A*ex, Ae€y;
(3) &L= {l4]": AeD }, where |A|" = {xeX;: dex};
4) v (Sud)x XL > R.
Lemma 6.5. SL = <XL,J_L,E_,L,VL> isa QLO—QMV-frame
Proof. Argumentation is similar to the case of QLO-MV-frame. [

Theorem 6.6. gFundamentaI theorem for QLO-QMV). For all A and
all xe X, xe||A||” iff Aex.

Proof. By induction on the length of A. In case of 4 = B®C it is
easy to see that B,Cex follows from B®Cex. Suffice to use 6.1(1). [

Corollary 6.7. T=A4 iff M_.T |= A.

Proof. If I'=4 then we need to consider an additional case of
B\®...®B,=A. If xe||B|", for all Bel, then by 6.6 B,,...,B,ex. By
6.1(1) it follows that 4 ex and thus xe ||A||L(_).

The other way round, if 4 is not QLO-QMV-derivable from I', then
by 5.4 there exists xe Xy such that I'c x and 4#x. Then by 6.6 xe||B||L(_)
for all BeT, but xe||4|",. [

Theorem 6.8. T=A iff 3. = A.

Proof. We need to consider an additional case of 4,®...®4,=A4 for
.o
Corollary 6.9. (Strong completeness for QLO-QMV). ©: T'|= 4 only if
I'=A.

Proof. Since by 6.5 31 is QLO-QMV-frame, then ® contains 3y as
its element. The rest is obvious. [

Thus corollary 6.9 shows that QLO-MV is strongly determined by
the class of all QLO-MV-frames.
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