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V.L.Vasyukov 

EFFECTS IN QUANTUM LOGIC  
OF OBSERVABLES*  

Abstract. In the paper a modal and bimodal extension of quantum logic of 
observables QLO is proposed. The former allows to obtain the syntactic 
counterpart of D.Mundici’s result on embedding of C*-algebra into an MV-
algebra while the latter has as its algebraic counterpart quantum MV-algebra 
of R.Giumtini. The soundness and completeness of both extensions  is proved 
in respect to the set-theoretical semantics developed early for QLO.  

1. Introduction 
In [4] D.Mundici shown that every approximately dimensional C*-

algebra with lattice dimensional group can be embedded into a count-
able MV algebra. Since such an MV algebra is also a Lindenbaum 
algebra of Łukasiewicz infinite-valued calculus Ł∞ (the notion of MV 
algebra was introduced by C.C.Chang in order to provide an algebraic 
proof of the completeness theorem for Ł∞) then this result would be 
treated as a tool for considering properties of quantum systems in the 
framework of Ł∞. Needless to say that from the physical point of view 
in this case we ought to consider an elements of MV algebra as a class 
of operators whose spectrum is contained in the real interval [0,1]. 

But the lack of developed interpretation of such operators forces us 
to approach those as so-called effects of a Hilbert space which are 
bounded linear operators such that for an every effect E and for all 
density operators D, 0 ≤ Tr(DE) ≤ 1 (Born probability). It was shown 
by R.Giuntini [2] that the class of all effects of any Hilbert space turns 
out to be an instance of an algebraic structure called quantum MV 
algebras. Those retain some important properties of MV algebras, 
while violating the crucial axiom of MV algebras: the so-called Łuka-
siewicz axiom. Quantum MV algebras represent non-idempotent exten-
sion of orthomodular lattices just as MV algebras represent non-idem-
potent extensions of Boolean algebras. 

Thus, in case of transferring Mundici’s method onto quantum MV 
algebra of effects we can interpret those as determining a kind of Born 
probabilities for quantum observables represented by operators in Hil-
bert space. In fact, those probabilities would be considered as prob-
abilities for observables to have as the result of measurement a certain 
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magnitude contained in the real line of numbers (as projectors in Hil-
bert space would be regarding as “yes-no” answering the same 
question).  

2. Quantum Logic of Observables 
We obtain the syntactic version of Mundici’s result if we have 

recourse to the so-called quantum logic of observables QLO [5]. QLO 
is axiomatized by means of the following axiom schemes and the rules: 
Ах1. A ⇒ A;  
Ax2. A ⇔ ¬¬A;  
Ax3. A∧(B∧C) ⇔ (A∧B)∧C;  
Ax4. A∨(B∨C) ⇔ (A∨B)∨C;  
Ax5. A∧(B∨C) ⇔ (A∧B)∨( A∧C); 
Ax6. ¬(A∨¬A) ⇒ B∧B;  
Ax7. A∧¬A ⇒ ¬(B∨¬B);  
Ax8. 1∧A ⇔ A 
Ax9. J0A ⇔ ¬(B∨¬B);  
Ax10. J1A ⇔ A;  
Ax11. Jα(A∧B) ⇔ JαB∧A; 
Ax12. Jα(A∨B) ⇔ JαB∨JαA;  
Ax13. ¬JαA⇔Jα¬A  
Ax14. Jα+βA ⇔ JαA∨JβA;  
Ax15. JαβA ⇔  JαJβA 
Ax16. ¬[(A∧B)∨¬(B∧A)]2 ⇔ (A∨¬A)2∧(B∨¬B)2         (A2 means A∧A). 
Rx1.    A ⇒ B                

¬B ⇒ ¬A                       
Rx2.    A ⇒ B         
       J|α|A ⇒ J|α|B  
Rx3.    A ⇒ B  B ⇒ C      

           A ⇒ C                           
Rx4.    A ⇒ B  C⇒D      
          A∨C ⇒ B∨D  
Rx5.    A∧A ⇒ B   C∧C ⇒ D       

   (A∧A) ∧ (C∧C) ⇒ B∧D 
Here A ⇒ B means 〈A,B〉∈L, where L is some logics, truth-value of 

JαA is calculated as the result of multiplying truth-value of A on α 
being a real number.  

Let Г be a non-empty set of wff. A wff A is said to be QLO-deriv-
able from Г, Г⇒A, if there exist B1,…,Bn∈ Г such that 
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(а) either B1∨…∨Bn⇒A; 
(b) or (B1∧…∧Bn)∧(Bn∧…∧B1) ⇒A; 
(c) or J|αi|Bi⇒A, i = 1,2,…,n. 

If A is QLO-derivable from ¬(A∨¬A) then A is QLO-derivable or is a 
QLO–theorem which writes ⇒A. Г is QLO–consistent if there is at 
least one wff not QLO–derivable from Г, and QLO–inconsistent oth-
erwise (it can be shown that Г is QLO-consistent iff for no A do we 
have both Г⇒A and Г⇒¬A). Г is QLO–full iff it is QLO–consistent 
and closed under ∨, ∧, J and QLO–derivability, i.e. iff 

(1) for some wff A, not Г⇒A; 
(2) if A∈Г and А⇒В, then В∈Г: 
(3) A,В∈Г implies A∧B, A∨B∈Г; 
(4) A∈Г implies J|α|A∈Г. 
If x⊆ Ф (where Ф is a set of wff) is QLO–full then 
(i) x⇒A iff A∈x; 
(ii) ¬(A∨¬A)∈x, for all wff А. 

QLO-full sets and QLO-derivability are linking with the following 
version of Lindenbaum’s Lemma: 

Г⇒A iff A belongs to QLO-full extension of Г. 
It is proved that if x is QLO-full and ¬A∉x, then there exists a 

QLO-full set y such that A∈y, and for all B, either ¬B∉x or B∉y. 
QLO have some peculiarities featuring quantum orthologic. Both in 

QLO and quantum orthologic the proof of Lindenbaum's Lemma does 
not require such power tools as, for example, Zorn’s Lemma, which 
was in case of orthologic regarded as unprecedented for logical 
systems. As to the QLO-full sets, then from topological point of view 
they are, in fact, proper filters and not the ultrafilters. This, in turn, 
leads that for both quantum orthologic and QLO there is not need in 
some version of an axiom of choice which is required to prove an 
existence of ultrafilters.  

It is easy to see that an algebra corresponding to QLO be an algebra 
of observables satisfying the axioms of algebraic approach in [1]. If we 
define an equivalency of formulas A and B, A ~ B as + A ⇔ B then 
denoting the set A/~ as [A] we obtain  

[A]+[B] = [A∨B],  
[A]°[B] = [A∧B], 
−[A]= [¬A], 0 = [¬(A∨¬A)],  
1 = [1], α[A] = [J|α|A].  
A structure F= 〈F,+,°,−,α,0,1〉 (where F = {P/~: P is a formula}, 

α∈R) is an algebra (of observables) while E = 〈F,+,-,α,0〉 be a vector 
(linear) space, 0 is a unit relative to +, and 1 is a unit relative to °. 
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3. Modal Quantum Logic of Effects  
Let us modify our formulation of QLO by replacing Ax1 with  

Ax1′. ¬(A∨B) ⇔ ¬A∨¬B 
The following theorems of QLO will be used in the sequel: 
Bx1. ¬(A∨¬A) ∨B ⇔ B 

It is easy to see that this modification does not lead to any change 
of QLO. As to the Ax1 then A ⇒ A can be proved from Ax2 by means 
of Rx3. Bx1 is proved by means of Ax9, Ax10, Ax14. 

To introduce effects into QLO we enrich the language of QLO with 
a unary operator Q and axiomatics of QLO with the following axiom 
schemes and the rule: 
Ax17. QA⇔ QQA  
Ax18. Q¬A ⇔ 1∨¬QA 
Ax19. Q1 ⇔ 1 
Ax20. Q(A∨B) ⇔ (QA∨QB) 
Ax21. ¬(B∨¬B) ⇒ QA ⇒ 1 
Ax22. 1 ⇔ 1∨QA  
Rx6.    A ⇒ B    
        QA ⇒ QB  

Let us denote the system QLO + {Ax17-Ax23, Rx6} as QLO-MV 
(with Ax1′). In order to prove that QLO-MV really describes the effects 
let us firstly recall the algebraic structure responsible for those. 
According to P.Mangani [3] MV algebras can be defined in the fol-
lowing way: 
(MV1)  (a⊕b) ⊕c = a⊕(b ⊕c) 
(MV2)  a⊕0 = a 
(MV3)  a⊕b = b⊕a 
(MV4)  a⊕1 = 1 
(MV5)  (a*)* = a 
(MV6)  0* = 1 
(MV7)  a⊕a* = 1 
(MV8)  (a*⊕b)*⊕b = (a⊕b*)*⊕a   (Łukasiewicz axiom) 

As in QLO we define [A] ⊕ [B] = [QA∨QB] and [A]* = [¬QA]. 
Theorem 3.1. A structure F = 〈F, ⊕,*,0,1〉 where F = {P/~: P is a 
formula prefixed with Q}. 0 = [¬(A∨¬A)], 1 = [1] is an MV algebra.  

Proof. Associativity of ⊕ for (MV1) follows from the definition of 
⊕ and associativity of ∨ in QLO as well as commutativity for (MV3). 
(MV2) is fulfilled since [A]⊕0 is defined by QA∨Q¬(A∨¬A) ⇔ 
Q(A∨¬(A∨¬A)) and then by Bx1 it will be equivalent to QA which 
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under the definition of P gives us [A]. In case of (MV4) we have 
QA∨Q1 ⇔ QA∨1 by Ax19. As to (MV5) then [A]** is determined by 
Q¬Q¬A and by Ax18, Ax17 it gives us Q¬Q¬A ⇔ 1∨¬Q¬A ⇔ 
1∨¬(Q¬A) ⇔ 1∨¬1∨QA. But we obtain 1∨¬1 ⇔ ¬¬1∨¬¬¬1 ⇔ 
¬(¬1∨¬¬1) ⇔ ¬(1∨¬1) with the help of Ax2, Ax1’. So, by Bx1 we 
obtain (1∨¬1)∨ QA ⇔ QA. (MV6) follows from Q¬¬(A∨¬A) ⇔ 
Q(A∨¬A) ⇔ QA∨Q¬A ⇔ QA∨1∨¬QA⇔ 1. 

In order to obtain (MV7) we have QA∨Q¬A by the definition and 
Ax17. Then like in case of (MV6) we get QA∨Q¬A ⇔ 1. 

In case of Łukasiewicz axiom for the left part we have 
Q¬(Q¬A∨QB)∨QB by the definitions and Ax17. Now by Ax18 and 
Ax17 we obtain Q¬(Q¬A∨QB)∨QB ⇔ Q¬Q¬A∨Q¬QB∨QB ⇔ 
1∨¬Q¬A∨Q¬QB∨QB ⇔ 1∨¬(1∨¬QA)∨1∨¬QB∨QB. By Ax1’, Ax2, 
Ax1’ we have 1∨¬(1∨¬QA)∨1∨¬QB∨QB ⇔ QA∨1 ⇔ 1. For the right 
part we likewise obtain Q¬(Q¬B∨QA)∨QA ⇔ QB∨1 ⇔ 1 and this 
determines that Łukasiewicz axiom will be satisfied. � 

In the sequel under wff we always mean a wff prefixed with Q. 
Definition 3.2. Let Г be a non-empty set of wff. A wff A is said to be 
QLO-MV-derivable from Г, Г⇒A, if there exist B1,…,Bn∈ Г   such that 

(а) either B1∨…∨Bn⇒A; 
(b) or (B1∧…∧Bn)∧(Bn∧…∧B1) ⇒A; 
(c) or J|αi|Bi⇒A, i = 1,2,…,n; 
(d) or QBi⇒A, i = 1,2,…,n. 

If A is QLO-MV-derivable from 1 then A is QLO-MV-derivable or is a 
QLO-MV-theorem which writes ⇒A. Г is QLO-MV-consistent if there 
is at least one wff not QLO-MV-derivable from Г, and QLO-MV-
inconsistent otherwise (it can be shown that Г is QLO-MV-consistent 
iff for no A do we have both Г⇒A and Г⇒Q¬A). Г is QLO-MV-full iff 
it is QLO-MV-consistent and closed under ∨, ∧, J, Q and QLO-MV-
derivability, i.e. iff 

(1) for some wff A, not Г⇒A; 
(2) if A∈Г and А⇒В, then В∈Г: 
(3) A,В∈Г implies A∧B, A∨B∈Г; 
(4) A∈Г implies J|α|A∈Г; 
(5) A∈Г implies QA∈Г. 

Lemma 3.3. If x⊆Ф (where Ф is a set of wff) is QLO-MV-full, then 
(i) x⇒A iff A∈x; 
(ii) Q¬(A∨¬A)∈x, for all wffs А prefixed with Q. 
Proof. (i) Since in QLO-MV A⇒A, sufficiency follows from the 

definition of QLO-MV-deivability. Necessity follows from 3.2(2), (3), 
(4), (5). 
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(ii) By definition x is non-empty, thus there exists B∈x. But by 
3.2(4) J0B∈x, so by Ax9and 3.2(2) we have ¬(A∨¬A)∈x. The result 
follows under Ах8 and 3.2(2). � 

QLO-MV-full sets and QLO-MV-derivability are connected with 
the following version of Lindenbaum’s Lemma : 
Theorem 3.4. Г⇒A iff A belongs to every QLO-MV-full extension of Г. 

Proof. If Г⇒A then there are B1,…,Bn∈Г such that either 
B1∨…∨Bn⇒A or (B1∧…∧Bn)∧(Bn∧…∧B1) ⇒A, or J|αi|Bi⇒A or QBi⇒A 
(1 ≤ i ≤ n). If x is QLO-MV-full and Г⊆ x, then B1,…,Bn∈x. Applying 
3.2(3),(4),(5) and then 3.2(2), we obtain A∈x. 

The other way round, suppose A is not QLO-MV-derivable from Г. 
We put x = {B: Г⇒B}. By Ах1 we have Г⊆ x, and by hypothesis A∉x. 
The proof will be accomplished if we can show that x is QLO-MV-full. 
Suppose B∈x and B⇒C, then there exist B1,…,Bn∈Г such that either 
B1∨…∨Bn⇒B, or (B1∧…∧Bn)∧(Bn∧…∧B1) ⇒B, or J|αi|Bi⇒B, or 
QBi⇒A (1 ≤ i ≤ n). So by Rx3 we obtain either B1∨…∨Bn⇒C, or 
(B1∧…∧Bn) ∧ (Bn∧…∧B1) ⇒C, or J|αi|Bi⇒C, or QBi⇒A, hence, Г⇒C, 
i.e. C ∈x. 

On the other side, if B,C∈x, then there exist B1,…,Bn,C1,…,Cn∈Г, 
such that B1∨…∨Bn⇒B and C1∨…∨Cn⇒C. Then by Rx4 we obtain 
B1∨…∨Bn∨C1∨…∨Cn⇒B∨C. So we have Г⇒B∨C  and thus B∨C∈x. 

Furthermore, if B∈x, then there exists B′∈Г such that J|α′|B′⇒B. But 
by Rx2 J|β|J|α′|B′⇒J|β|B and by Ах15 we obtain J|βα′|B′⇒J|β|B, thus, 
Г⇒J|β|B∈x.  

Again, let B,C∈x. Then there exist B1,…,Bn, C1,…,Cn∈Г such that 
(B1∧…∧Bn)∧(Bn∧…∧B1)⇒B and (C1∧…∧Cn)∧(Cn∧…∧C1) ⇒C. But 
then by Rx5 we obtain (B1∧…∧Bn∧C1∧…∧Cn)∧(Cn∧…∧C1∧Bn∧ 
…∧B1) ⇒ B∧C. Hence, Г⇒B∧C and B∧C∈x. 

If B∈x, then there exists B′∈Г such that QB′⇒B. Since by Rx6 
QQB′ ⇒QB then under Ax17 we have QB′ ⇒QB. Thus, Г⇒QB∈x. 

This shows that x is closed under QLO-MV-derivability, conjunc-
tion, disjunction, J- and Q-operators. Since A∉x then A is not QLO-
MV-derivable from x, therefore x is QLO-MV-consistent. � 
Theorem 3.5. If x is QLO-MV-full and Q¬A∉x, then there exists QLO-
MV-full set y such that A∈y, and for all B, either Q¬B∉x or B∉y. 

Proof. Let y = {B: A⇒B}. By Ах1 A∈y. Now let ¬B∈x. Then B∉y, 
or else А⇒В, whence ¬B ⇒ ¬А by Rx1, and so, in turn, by Rx6 and by 
3.2(2), Q¬А∈x contrary to hypothesis. By 3.2(ii) we have 
Q¬(A∨¬A)∈x. According to what we just proved, it follows that 
A∨¬A∉y. Proceeding in a similar manner to 3.4 we can show that y is 
closed under ∨,∧;J,Q and QLO-MV-derivability. Then since A∨¬A is 
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not QLO-MV-derivable from y, i.e. y is QLO-MV-consistent, y be 
QLO-MV-full as required. � 

Thus, in turn, for QLO-MV there is also not need in some version 
of an axiom of choice which is required to prove an existence of 
ultrafilters. 

4. Semantics of QLO-MV 
Since our logic is an extension of QLO then we adduce main defi-

nitions of QLO-semantics modifying them as may be necessary for 
QLO-MV. 
Definition 4.1. QLO-MV-model is a 4-tuple M = 〈X,⊥,ξ,v〉, where  

(a) X is a non-empty set; 
(b) ⊥ is an orthogonality relation on X; 
(c) ξ is a non-empty collection of ⊥-closed subsets of X closed 

under set-theoretic intersection and the operation * (Y* is 
defined as {x: x⊥y});  

(d) v is a function assigning to each propositional variable and 
formula of QLO-MV recursively in every point (every 
element) of X a real number, i.e. v: (S∪Ф) × X →R where 
S is a set of propositional variables and Ф is a set of wffs. 

Denoting the set {x∈X: v(A,x) = a} as ||A||a we define recursively the 
value of a wff in a QLO-MV-model as follows: 

(1) ||pi||a = {x∈X: v(pi,x) = a}∈ξ; 
(2) ||A∨B||a = {x∈X: x∈||A||b∩||B||c & a = b + c}; 
(3) ||A∧B||a = {x∈X: x∈||A||b∩||B||c & a = bc}; 
(4) ||¬A||a = {x∈X: x⊥||A||-a & v(¬A,x) = a }; 
(5) ||J|α|A||a = {x∈X: x∈||A||b & a = αb}; 
(6) ||1||1 = X т.е. v(1,x) = 1 for all x∈X; 
(7) ||QA||a = {x∈X: x∈||A||b & a = q(b)} where q: v → [0,1] such 

that  
(i) q(q(v(A))) = q(v(A)); 
(ii) q(v(¬A)) = 1 − q(v(A)); 
(iii) q(v(1)) = 1 and q(v(¬(A∨¬A)) = 0; 
(iv) q(v(Q(A∨B))) = max{q(v(QA)) + q(v(QB)),1}. 

If Г is a non-empty set of wffs then we say that Г implies А at x in 
M, M: Г⎟=x A iff ∀B∈Г(v(B,x) ≤ v(A,x)), Г M-implies А, M: Г⎟= A iff 
either ∃B∈Г(x∉||B||(-)), i.e. when B is not verified at x (verification but 
not truthfulness since we deal with many-valued logical matrix), or Г 
implies A at all x in M. If we define ℑ = 〈X,⊥,ξ〉 be QLO-MV-frame 
then Г ℑ-implies A iff ℑ: Г⎟= A for all QLO-MV-models M on ℑ. If ℘ 
is a class of QLO-MV-frames then Г ℘-implies A, ℘: ℑ:Г⎟= A iff ℑ: 
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Г⎟= A for all ℑ∈℘. A class ℘ is said to determine QLO iff for all 
A,B∈Ф, А⇒В iff ℘: А⎟= В. ℘ strongly determines QLO iff for all Г,А, 
Г⇒А iff ℘: Г⎟= A. 

If we define a range of values of a formula A as ||A|| = ⎩⎭a∈R ||A||a 
then extending this definition on 4.1(1)-(7) hereafter we denote as ||pi||, 
||A∨B||, ||A∧B||, ||¬A||, ||J|α|A||, ||1||, ||QA|| the ranges of respective formu-
las while ||A||(-) means an arbitrary value of respective formula. 
Lemma 4.2. For any QLO-MV-model M and any A∈Ф, ||A||(-)∈ξ.  

Proof. By induction on the length of A, exploiting 4.1. � 
Theorem 4.3. (Soundness of QLO-MV). Г⇒А if Θ: Г⎟= A, where Θ is 
a class of all QLO-MV-frames. 

Proof. The proof, by induction on QLO-MV-derivability, proceeds 
by showing that the result holds for all Ax1-Ax22 and is preserved by 
application of Rx1-Rx6. We consider only the less obvious cases.  

Ах2. Let x∈||A||a. Then if y∈||¬A||-a, by 4.1(4) y⊥x and hence 
(symmetry) x⊥y. 4.1(4) again gives x∈||¬¬A||a. 

Now let x∈||¬¬A||a. Then y∈||¬A||-a only if x⊥y, i.e. y⊥||A||a only if 
x⊥y. But ||A||a is ⊥-closed by 4.2 and thus x∈||A||a. 

Ах6. It is easy to make sure that v(¬(A∨¬A),x) = 0 at any point 
x∈X and likewise v(A∨¬A,x) = 0. But if x∈||¬(A∨¬A)||0, then 
y∈||A∨¬A||0 just in case of x⊥y. By 4.1(2) y∈||A||b∩||¬A||c and b + c = 0, 
i.e. c = −b. But then by 4.1(4) y⊥y contrary to the irreflexivity of ⊥. 
Hence, there is no y in any M for which we have y⊥||A∨¬A||0, whence it 
follows by the definition that x∈||¬(A∨¬A)||0 for any x. Besides, for all 
B, by 4.1(3), v(B∧B,x) ≥ 0. 

Ax7. Let x∈||1∧A||a. Then y∈||1||1∩||A||a by 4.1(3) and v(1∧A,x) = 
v(1,x) ° v(A,x). But v(1,x) = 1 at any point x∈X in virtue of the defini-
tion of (see 4.1(6)). So v(1∧A,x) = v(A,x) and thus M: 1∧A⎟=A and M: 
A⎟= 1∧A for any A. 

Ax11. Let x∈||Jα(A∧B)||a. Then by 4.1(5) x∈||A∧B||b and a= αb. By 
4.1(5) x∈||A||c∩||B||d and b = cd. Hence, a = αdc. But by 4.1(5) 
x∈||JαA||αc∩||B||d and by 5.3.3(3) x∈||JαA∧B||αcd=a. 

Ax13. Let x∈||A||a. Then by 4.1(5) x∈||JαA||αa and by 4.1(4) 
y∈||¬JαA||-αa just in case of x⊥y. But then y∈||¬A||-a because of x⊥y, and 
by 4.1(5) y∈||JαA||-αa. 

Ax17. Let x∈||QQA||a. Then by 4.1(7) x∈||QA||b and a = q(b). 
Again, by 4.1(7) this implies x∈||A||c and b = q(c). We have q(b) = 
q(q(c)) = q(c) by the property of q and thus a = q(c). 

Ax18. Let x∈||A||b. Then by 4.1(4) y∈||¬A||-b only if x⊥y, i.e. y⊥||A||b 
only if x⊥y.Furthemore, by 4.1(7) y∈||Q¬A||a and a = 1 – q(b) accord-
ing to the properties of q. But it is easy to check that the result will be 
the same for the right side of Ax18, i.e. y∈||1∨¬QA||a and a = 1-q(b). 
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Rx1. Suppose M: A⎟= B and let x∈||¬B||-a. Then y∈||A||b only if 
y∈||B||a (by inductive hypothesis), only if x⊥y. This shows that  
x∈||¬A||-b.  

The rest is obvious. � 
Definition 4.4. Let L be a modal quantum logic of effects. The 
canonical QLO-MV-model of L is the structure ML = 〈XL,⊥L,ξL,vL〉, 
where: 
(1) XL = {x ⊆ Ф: x is a QLO-MV-full set}; 
(2) x⊥Ly iff there is a wff A such that Q¬A∈x, A∈y; 
(3) ξL = {|A|L: A∈Ф }, where |A|L = {x∈XL: A∈x}; 
(4) vL: (S∪Ф) × XL → R. 

Denoting {x∈XL: v(A,x) = a} as ||A||La we come to the definition of 
the value of formula and ranges of valuation in canonical model ML 
analogously to 4.1(1)-(7). 
Lemma 4.5. ℑL = 〈XL,⊥L,ξL,vL〉 is a QLO-MV-frame. 

Proof. Let x∈XL. Then for any А neither Q¬A,A∈x nor х is QLO-
MV-inconsistent (by Ax7). Hence, x⊥Lx does not take place. If x⊥Ly, 
then for some wff А we have Q¬A∈x, A∈y. By means of Ах2 we come 
to the conclusion that Q¬B∈y, B∈x, where B = Q¬A. Thus x⊥Ly and 
⊥L is an orthogonality relation. To check whether ||A||L be ⊥L-closed 
suppose that x∉||A||L, i.e. A∉x. By Ах2 ¬¬A∉x and so by 3.5 there is 
y∈XL such that x⊥Ly fails and ¬А∈y. Meanwhile if z∈||A||L then A∈z 
and, hence, y⊥Lz. Thus, y⊥L||A||L as it was required. Clearly, ξL will be 
closed under intersection (by virtue of properties QLO-MV-derivability 
and QLO-MV-fullness). � 
Theorem 4.6. (Fundamental theorem for QLO-MV). For all А and all 
x∈X, x∈||A||L iff A∈x. 

Proof. By induction on the length of А. In case of A = B∨C, 
A=B∧C, A = JαB and A = QB it is easy to see that B,C∈x follows from 
B∨C, B∧C, JαB, QA∈x. It will suffice to use 4.1(2),(3),(5),(7). Conver-
sion follows from 3.2(3),(4),(5). 

Suppose that A = ¬B and for B the theorem is true. Let Q¬B∈x. If 
y∈||B||L(-) then by inductive hypothesis B∈y and hence x⊥Ly. By 4.1(4) 
it follows that x∈||B||L(-). Again, if Q¬B∉x, then according to 3.5 there 
is y∈XL such that B∈y and thus by inductive hypothesis y∈||B||L(-) but 
x⊥Ly fails. By 4.1(4) we come to the conclusion that x∉||B||L(-). � 
Corollary 4.7. Г⇒A iff ML:Г⎟= A. 

Proof. If Г⇒A then there are B1,…,Bn∈Г such that either 
B1∨…∨Bn⇒A or (B1∧…∧Bn)∧(Bn∧…∧B1)⇒A, or J|αi|Bi⇒A, or QBi ⇒A 
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(1 ≤ i ≤ n). If x∈||B||L(-) for all B∈Г, then by 4.6 B1,…,Bn∈x. By 4.1(2)-
(5) it follows that A∈x and thus x∈||A||L(-). 

The other way round, if A is not QLO-MV-derivable from Г, then 
by 3.4 there exists x∈XL such that Г⊆ x and A∉x. Then by 4.6 x∈||B||L(-) 
for all B∈Г, but x∉||A||L(-). � 
Theorem 4.8. Г⇒A iff ℑL:Г⎟= A. 

Proof. Let M be an arbitrary QLO-MV-model on ℑL. For every 
i<ω, ||pi||M∈ξL there is Bi such that ||pi||M(-) = |Bi|L(-) (|Bi|L(-) is defined as in 
4.4) and |Bi|L(-) = ||Bi||L(-). For any wff C let C′ is the result of uniformly 
replacing each pi, occurring in C, with Bi. Clearly, there are in Г such 
A1,…,An that either A1∨…∨An⇒A or (A1∧…∧An)∧(An∧…∧A1)⇒A, or 
J|αi|Ai⇒A, or QBi⇒A (1 ≤ i ≤ n) and so we have A′1∨…∨A′n ⇒A′ etc. 
Then by 4.7 either ML: A′1∨…∨A′n⎟= A′, or M: (A′1∧…∧A′n) ∧ 
(A′n∧…∧A′1)⎟= A′, or ML: J|αi|A′i⎟= A′, or ML: QA′i⎟= A′. But a simple 
induction shows that ||C||M = ||C′||

ML and so either ML: A1∨…∨An⎟= A, or 
ML: (A1∧…∧An)∧(An∧…∧A1)⎟= A, or ML: J|αi|Ai⎟= A, or ML: QAi⎟= A 
whence it follows that M: Г⎟= A. Since this holds for all models M on 
ℑL, we conclude ℑL: Г⎟= A. � 
Corollary 4.9. (Strong completeness for QLO-MV). Θ: Г⎟= A only if 
Г ⇒ A. 

Proof. Since by 4.5 ℑL is QLO-MV-frame, then Θ contains ℑL as 
its element. The rest is obvious. � 

Thus corollary 4.9 shows that QLO-MV is strongly determined by 
the class of all QLO-MV-frames.  

5. Bimodal Quantum Logic of Effects 
Regarding effects of a Hilbert space as bounded linear operators E 

such that for all density operators D, 0 ≤ Tr(DE) ≤ 1, we can define 
over the class E(H) of all effects a partial ordering relation ≤ in the 
following way [2, p.397]. For any E,H∈E(H):  

E ≤ H iff for all density operators D: Tr(DE) ≤ Tr(DF). 
The class of all effects coincides with the class of all bounded linear 

operators between 0 and 1. Clearly, E(H) contains the class of all λ1 
(with λ∈[0,1]) where for any state vector ϕ∈H (λ1)ϕ := λϕ. Now we 
define for any E,H∈E(H): 

               ⎧ E + F    if E + F∈E(H) 
E ⊕ F := ⎨ 
               ⎩ 1,            otherwise 

where + the usual operator-sum, 
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E* := 1 – E. 
It is easy to see that 
E ⊕ F = E + F iff E + F ≤ 1. 

Likewise one can easily check that the structure E(H) = 〈E(H),⊕,∗,1,0〉 
violates Łukasiewicz axiom of MV-algebra. Actually, let us consider 
two non-trivial effects E,F such that it’s not the case that E ≤ F and it’s 
not the case that F ≤ E. Then, by definition of ⊕ we have E ⊕ F* = 1 
and F ⊕ E* = 1.  Hence, (E*⊕ F)*⊕ F = 0 ⊕ F = F ≠ E = 0 ⊕ E = (E ⊕ 
F*)* ⊕ E. Thus, Łukasiewicz axiom is violated in the structure E(H). 

As it was mentioned above R.Giuntini [2] showed that the class of 
all effects (determines by Born probability) of any Hilbert space turns 
out to be an instance of an algebraic structure called quantum MV 
algebra (QMV algebra). The latter is a structure M = 〈M, ⊕,*,1,0〉 
where M is non-empty set, 0 and 1 are constant elements of M, ⊕ is a 
binary operation and * is a unary operation satisfying the following 
axioms (where a⊗b := (a*⊕ b*)*, ab := (a⊕b*)⊗b and ab := 
(a⊗b*)⊕b): 
(QMV1)  (a⊕b) ⊕c = a⊕(b⊕c) 
(QMV2)  a⊕0 = a 
(QMV3)  a⊕b = b⊕a 
(QMV4)  a⊕1 = 1 
(QMV5)  (a*)* = a 
(QMV6)  0* = 1 
(QMV7)  a⊕a* = 1 
(QMV8)  a(ba) = a 
(QMV9)  (ab)c = (ab)(bc) 
(QMV10) a⊕ (b(a⊕c)*) = (a⊕b)(a⊕ (a ⊕c)*) 
(QMV11) a⊕ (a*b) = a⊕b 
(QMV12) a⊕(a*⊕b) (b*⊕a) = 1 

It seems possible to yield logic of effects in QLO framework corre-
sponding quantum MV algebra. To this end we will enrich the language 
of QLO with the help of a binary modal operator ⊕ and unary modal 
operator * and enlarge the list of QLO axiom with the following 
inference rules: 
Rx7.    ¬(C∨¬C) ⇒ A ⇒ 1    ¬(C∨¬C) ⇒ B ⇒ 1    A∨B ⇒ 1   

                                          A⊕B ⇔ A∨B                         
Rx8.     1 ⇒ A⊕B     

      1 ⇔ A⊕B                         
Rx9.  ¬(A∨¬A) ⇒ A ⇒ 1           
                1∨ ¬A ⇔ A*               
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(the double line means an inference in both directions). 
Let us denote a system QLO + {Rx7-Rx9} as QLO-QMV (with 

Ax1′). As in QLO we define [A] ⊕ [B] = [A⊕B] and [A]* = [A*]. 
Theorem 5.1. A structure F = 〈F, ⊕,*,0,1〉 where F = {P/~: P is a 
formula and ¬(A∨¬A) ⇒ P ⇒ 1}, 0 = [¬(A∨¬A)], 1 = [1], представ-
ляет собой QMV алгебру.  

Proof. It is easy to see that satisfiability of (QMV1) and (QMV3) is 
a consequence of associativity and commutativity of ∨. (QMV2) will 
take place in virtue of Вх2. We have (QMV4) because from 
¬(A∨¬A)⇒ B (by Rx7) one get ¬(A∨¬A)⊕1 ⇒ B⊕1 (by Rx4), and 
since by Вх1 ¬(A∨¬A)⊕1⇔1 then by Rx8 1 ⇔ B⊕1. In case of 
(QMV5) by Rx11 we have 1∨ ¬A ⇔ A*, then again implementing Rx9 
we obtain 1∨¬(1∨ ¬A) ⇔ A**. But by Вх2 this reduces to 1∨¬1∨ 
¬¬A) ⇔ A**, which in view of 1∨¬1 ⇔ ¬¬1∨¬¬¬1 ⇔ ¬(¬1∨¬¬1) 
⇔ ¬(1∨¬1) (by Ax2, Ax1’) and Ax2, Ax1’ reduces, in turn, to A ⇔ 
A**. Analogous manipulations allow to ascertain the satisfiability of 
(QMV6) and (QMV7). 

In order to check the satisfiability of the remainder axioms we 
define A⊗B ⇔ (A*⊕ B*)* ⇔ A∨B∨¬1,   

A⊗B⇔ (A*⊕ B*)*,  
AB ⇔ (A⊕B*)⊗B and AB ⇔ (A⊗B*)⊕B.  
Moreover, we obtain that 
                 ⎧A,  if A ⇒B       ⎧A,  if B ⇒A 
AB ⇔    ⎨   AB ⇔    ⎨ 
                 ⎩B,  otherwise      ⎩B,  otherwise 

Actually, by the definition AB ⇔ (A⊕B*)⊗B ⇔ (A⊕B*)∨B∨¬1. If 
A⇒B then A⊕B*⇒B⊕B*⇔1 and by virtue of Rx7 and Rx9 
A⊕B*⇔A∨¬B∨1, and thus AB ⇔A. Otherwise by Rx11 A⊕B*⇔1 
and AB ⇔B. 

Further, by the definition we have AB ⇔ (A⊗B*)⊕B. If B⇒A, 
then B⊗B*⇒A⊗B*, which leads to ¬(B∨¬B) ⇒A⊗B*. This gives us 
an opportunity to exploit Rx7 for calculating (A⊗B*)⊕B, which gives 
(A⊗B*)⊕B ⇔ (A⊗B*)∨B ⇔ A∨B*∨B ∨¬1 ⇔ A∨1∨¬B∨B∨¬1⇔ A. 
Otherwise we get A⊗B* ⇒ ¬(B∨¬B). But by Rx7 we obtain that from 
A⊕B⇒¬(B∨¬B) it follows A⊕B⇔¬(B∨¬B), and thus 
A⊗B*⇔¬(B∨¬B) and (A⊗B*) ⊕ B ⇔ B.  

In case of (QMV8) if A⇒B then A(BA)⇔ AB⇔A. If it is not 
the case that A⇒B, then A(BA)⇔ AA⇔A. 

For (QMV9) we need that (AB)C ⇔ (AB)(BC). Two cases 
are possible: 

1) B ⇒C,  
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2) it is not the case that B ⇒C. 
Case 1). If A⇒B then by virtue Rx3 A⇒C. Then (AB)C 
⇔ AC⇔A⇔AB⇔ (AB)(BC). If it is not the case that A⇒B, 
then (AB)(BC) ⇔ BB ⇔ B ⇔BC ⇔ (AB)C. 
Case 2). Since it is not the case that B ⇒C, then we get BC ⇔C. 
Hence, (AB)(BC) ⇔(AB)C. 

In order that (QMV10) is satisfied we need A⊕(B(A⊕C)*) ⇔ 
(A⊕B)(A⊕ (A⊕C)*). Two cases are possible: 

1) A⊕C⇔1, 
2) it is not the case that A⊕C⇔1. 

Case 1). A⊕(B(A⊕C)*) ⇔ A⊕(B¬(A∨¬A)) ⇔A and (A⊕B)(A⊕ 
(A⊕C)*) ⇔(A⊕B)(A⊕¬(A∨¬A)) ⇔ ((A⊕B) ⊕ A*)⊗A⇔ ((B⊕(A ⊕ 
B*))⊗A⇔ (B ⊕ 1))⊗A⇔ A. 
Case 2) has two subcases: 

а) B⇒(A⊕C)*, 
b) it is not the case that B ⇒ (A⊕C)*. 

Subcase a). By hypothesis, A⊕(B(A⊕C)*)⇔A⊕B and (A⊕B)(A⊕ 
(A⊕C)*) ⇔ (A⊕B)(A⊕ (A∨C)*). If (A⊕(A∨C)*) ⇔1 then we suc-
ceed. Therefore we can suppose that (A⊕(A∨C)*) ⇔1 is not the case. 
Then (A⊕(A∨C)*) ⇔ (A∨(A∨C)*) ⇔ C*. Thus (A⊕B)(A⊕ (A∨C)*) 
⇔ (A⊕B)C*. By hypothesis, B⇒(A⊕C)* ⇔ 1∨¬A∨¬C, hence, 
A∨B⇒C*. Finally, (A⊕B)C*⇔A⊕B. 
Subcase b). By hypothesis, we have that A⊕(B(A⊕C)*) 
⇔ A⊕(B(A∨C)*) ⇔ A⊕(A∨C)* ⇔ A∨(A∨C)* ⇔ C*. Now, (A⊕B) 
(A⊕ (A⊕C)*) ⇔ (A⊕B)C*. By hypothesis, it is not the case that B 
⇒ (A⊕C)*. Then it is not the case that C ⇒ (A⊕B)*, hence it is not the 
case that (A⊕B) ⇒C*. Thus, (A⊕B)C* ⇔ C*. 

Cases of (QMV11) and (QMV12) are easily verified. � 
In the sequel under wff we always mean wff P, for which ¬(A∨¬A) 

⇒ P ⇒ 1 is true. 
Definition 5.2. Let Г be a non-empty set of wffs. A wff A is said to be 
QLO-QMV-derivable from Г, Г⇒A, if A is QLO-derivable from Г and 
there exist B1,…,Bn∈ Г, such that 

(а) B1⊕…⊕Bn ⇒A. 
The notions of QLO-QMV-derivability, QLO-QMV-consistency etc. 
are defined in the same way as in case of QLO-MV (it can be shown 
that Г is QLO-QMV-consistent iff for no A do we have both Г⇒A and 
Г⇒A*). Г is QLO-QMV-full iff it is QLO-full and A,В∈Г implies 
A⊕B∈Г. 
Lemma 5.3. If x⊆Ф (where Ф is a set of wff) is QLO-QMV-full, then 

(1) x⇒A iff A∈x; 
(2) 1∈x for all wff А. 
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Proof. (ii) By definition x is non-empty, thus there exists B∈x. But 
by 5.2 J0B∈x, so by Ax9 and 3.2(2) we have ¬(A∨¬A)∈x. But since 
for wff P always will be true that ¬(A∨¬A) ⇒ P ⇒ 1, then by 5.2 we 
obtain the desired result. � 

QLO-QMV-full sets and QLO-QMV-derivability are connected 
with the following version of Lindenbaum’s Lemma : 
Theorem 5.4. Г⇒A iff A belongs to every QLO-QMV-full extension of Г. 

Proof. We need verify only the cases of B1⊕…⊕Bn⇒A and 
B⊕C∈x. � 
Theorem 5.5. If x is QLO-QMV-full and A*∉x, then there exists QLO-
QMV-full set y such that A∈y and for all B, either B*∉x or B∉y. 

Proof. Let y = {B: A⇒B}. By Ах1 A∈y. Now let B*∈x, that 
implies ¬B∈x by Rx9. Then B∉y, or else А⇒В and ¬B ⇒ ¬А by Rx1, 
¬А∈x and then A*∈x contrary to hypothesis. Further, by 5.3 we have 
1∈x. According to what we just proved, by Rx9 we obtain that 
1∨¬1∉y. Proceeding in a similar manner to 5.4 we can show that y is 
closed under QLO- and QLO-QMV-derivability. Then since 1∨¬1 is 
not QLO-QMV-derivable from y, i.e. y is QLO-QMV-consistent, y be 
QLO-QMV-full as required. � 

6. Semantics of QLO-QMV 
Since our system is an extension of QLO then for its description we 

will exploit the definitions of QLO-semantics modifying them as 
required to convey specificity of QLO-QMV. 
Definition 6.1. QLO-QMV-models are QLO-models enriched with the 
following two points in recursive definition of the value of wff: 

(1) ||A⊕B||a = {x∈X: x∈||A||b∩||B||c & a = min(1,b + c)}; 
(2) ||A*||a = {x∈X: x⊥||A||1-a & v(A*,x) = 1-a }. 

Lemma 6.2. For any QLO-QMV-model M and any A∈Ф, ||A||(-)∈ξ.  
Proof. By induction on the length of A, exploiting 6.1. � 

Theorem 6.3. (Soundness of QLO-MV). Г⇒А if Θ: Г⎟= A, where Θ is 
a class of all QLO-QMV-frames. 

Proof. The proof, by induction on QLO-QMV-derivability, pro-
ceeds by showing that the result holds for all Ax1-Ax16 and is pre-
served by application of Rx1-Rx5, Rx7-Rx9. We consider only the 
cases of Rx7-Rx9 (accounting of the proof for QLO).  

Rx7. By hypothesis, M:¬(C∨¬C)⎟=A, M:A⎟=1, M:¬(C∨¬C)⎟=B, 
M:B⎟=1, M:A∨B⎟=1. According to the definition M:¬(C∨¬C) ⎟=xA iff 
v(¬(C∨¬C),x) ≤ v(A,x), i.e. 0 ≤ v(A,x), and M:A⎟=x1 iff v(A,x) ≤ v(1,x), 
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i.е. v(A,x)≤1. The same is true for B. Besides, we have v(A∨B,x) ≤ 
v(1,x). Then by 4.1(2), 6.2(1) we obtain (A∨B,x) = v(A,x) + v(B,x) = 
v(A⊕B,x). In the reverse direction the proof is obvious. 

Rx8. By hypothesis, M:1⎟=A⊕B. Then we have M:1⎟=xA⊕B iff 
1≤v(A⊕B,x). But since v(A⊕B,x) = min(1,v(A,x) + v(B,x)), then, clearly, 
1 = v(A⊕B,x). 

Rx9. Let M:¬(C∨¬C) ⎟=A, M:A⎟= 1. Then M:¬(C∨¬C)⎟=xA iff 0≤ 
v(A,x), and M:A⎟=x1 iff а = v(A,x) ≤ 1. Further, y∈||¬A||-a only if x⊥y. 
By 4.1(2) we get y∈||1∨¬A||с iff y∈||1||1∩||¬A||-a and c = 1 – a. But by 
6.2(2) we have y∈||A*||с. � 
Definition 6.4. The canonical QLO-QMV-model of L (bimodal 
quantum logic of effects) is the structure ML = 〈XL,⊥L,ξL,vL〉 where: 
(1) XL = {x ⊆ Ф: x is a QLO-QMV-full set}; 
(2) x⊥Ly iff there is a wff A such that A*∈x, A∈y; 
(3) ξL = {|A|L: A∈Ф }, where |A|L = {x∈XL: A∈x}; 
(4) vL: (S∪Ф) × XL → R. 
Lemma 6.5. ℑL = 〈XL,⊥L,ξL,vL〉 is a QLO-QMV-frame. 

Proof. Argumentation is similar to the case of QLO-MV-frame. � 
Theorem 6.6. (Fundamental theorem for QLO-QMV). For all А and 
all x∈X, x∈||A||L iff A∈x. 

Proof. By induction on the length of А. In case of A = B⊕C it is 
easy to see that B,C∈x follows from B⊕C∈x. Suffice to use 6.1(1). � 
Corollary 6.7. Г⇒A iff ML:Г⎟= A. 

Proof. If Г⇒A then we need to consider an additional case of 
B1⊕…⊕Bn⇒A. If x∈||B||L(-) for all B∈Г, then by 6.6 B1,…,Bn∈x. By 
6.1(1) it follows that A∈x and thus x∈||A||L(-). 

The other way round, if A is not QLO-QMV-derivable from Г, then 
by 5.4 there exists x∈XL such that Г⊆ x and A∉x. Then by 6.6 x∈||B||L(-) 
for all B∈Г, but x∉||A||L(-). � 
Theorem 6.8. Г⇒A iff ℑL:Г⎟= A. 

Proof. We need to consider an additional case of A1⊕…⊕An⇒A for 
Г. � 
Corollary 6.9. (Strong completeness for QLO-QMV). Θ: Г⎟= A only if 
Г⇒A. 

Proof. Since by 6.5 ℑL is QLO-QMV-frame, then Θ contains ℑL as 
its element. The rest is obvious. � 

Thus corollary 6.9 shows that QLO-MV is strongly determined by 
the class of all QLO-MV-frames.  
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