В.Х.Хаханян

ПРЕДИКАТЫ РЕАЛИЗУЕМОСТИ ДЛЯ ТЕОРИИ МНОЖЕСТВ

В [1] А.Г.Драгалин предложил метод получения одних моделей типа реализуемости для интуиционистской арифметики из других. Мы предлагаем аналогичный метод для теории множеств с интуиционистской логикой ZFIDC (точная формулировка может быть найдена в [2]). Как и в [2], мы считаем, что ZFIDC содержит термы, вводимые по аксиоме выделения. Предикат Т, определенный на множестве предложений теории ZFIDC, назовем предикатом типа реализуемости (г-предикатом), если 1) ZFIDC выводимо $\varphi \Rightarrow T\varphi$; 2) $T\varphi$, $T(\varphi \to \psi) \Rightarrow T\psi$ для любых предложений φ и ψ . Самый простой пример г-предиката: $T\varphi \Leftrightarrow ZFI$ выводимо φ . Первая операция, дающая новые г-предикаты, такова: если $\{T_i\}$ семейство г-предикатов, то новый предикат, $T=\Pi_iT_i$, т.е. $T\varphi \Leftrightarrow iT\varphi_i$. Опишем теперь вторую операцию. Пусть Λ – высказывание и T – T-предикат. Пусть A – предикат, заданный на множестве замкнутых атомарных формул ZFIDC. Допустим, что:

- 1) Л⇒Аф⇒Тф для всех замкнутых атомарных формул ZFIDC
- 2) $\Lambda \Rightarrow T\varphi$
- 3) если ϕ -атомарная истинная замкнутая формула, то А ϕ
- 4) если ϕ -атомарная замкнутая ложная формула и $A\phi$, то Λ
- 5) предикат A экзистенциален на множестве атомарных формул, т.е. $\forall q[A(q \in t) \Leftrightarrow A(q \in r)] \land A(r \in p) \Rightarrow A(t \in p)$
- 6) для всякой формулы $\varphi(x)$ с одной свободной переменной и для всякого терма t найдется другой терм q такой, что $\forall r[A(r \in q) \Leftrightarrow A(r \in t) \land T\varphi(r)].$

Определим теперь новый предикат $S(\Lambda, A, T)$ на множестве предложений ZFI индукцией по построению формулы ϕ :

- 1) Ѕф ⇔Аф для атомарной замкнутой формулы ф
- 2) $S(\phi \wedge \psi) \Leftrightarrow S\phi \wedge S\psi$
- 3) $S(\phi \lor \psi) \Leftrightarrow S\phi \lor S\psi$
- $4) \ S(\phi \to \psi \) \Leftrightarrow (S\phi \Longrightarrow S\psi) \land T(\phi \to \psi)$
- 5) $S(\forall x \varphi(x)) \Leftrightarrow \forall t. S\varphi(t) \wedge T(\forall x \varphi(x))$
- 6) $S(\exists x \varphi(x)) \Leftrightarrow \exists t. S\varphi(t)$
- 7) $S(\perp)=\Lambda$

Утверждения:

- 1. Sφ⇒Tφ
- 2. $S(\perp \rightarrow \phi)$
- 3. ZFIDC выводимо φ⇒Sφ
- 4. S есть r-предикат.

В [3] мы применили вторую операцию при построении модели для доказательства допустимости правила Маркова в ZFIDC.

Дадим неформальный комментарий применимости изложенного метода и его метаматематический анализ, сделав это по сравнению с аналогичным исследованием в [1]. В качестве примера там дается доказательство выводимости в НА так называемого принципа Р.

Операция S, изложенная выше, позволяет получить (для арифметики НА, конечно) некоторые известные реализуемости, например, штрих Акцела, штрих-реализуемость Клини (последняя используется для доказательства такого замечательного факта, как выполнимость в интуиционистской арифметике свойства нумерической экзистенциальности). Однако наиболее важным с точки зрения метаматематических исследований является тот факт, что указанная операция позволяет объединять модели Крипке для арифметики (полученные с помощью операции Сморинского, [4]) в новую модель Крипке. Для арифметики это соображение показывает, что все метаматематические результаты, полученные с помощью операции Сморинского, могут быть получены и с помощью изложенной выше операции S (эта операция для арифметики отличается от изложенной выше отсутствием пунктов 5 и 6 в первом определении). Использование этой операции для арифметики позволяет часто провести рассуждения как с классической, так и с интуиционистской точек зрения, тогда как применение операции Сморинского требует теоретико-множественного рассмотрения и использования закона исключенного третьего. Некоторые авторы предпринимали попытки интуиционистского рассмотрения операции Сморинского, однако в этих работах были существенные пробелы и, кроме того, использовались специфически интуиционистские методы рассуждения (например, принцип непрерывности Брауэра или теорема о веере), которые являются неприемлемыми с классической точки зрения.

Что касается теории множеств с интуиционистской логикой, то одно из приложений можно, как указано выше, найти в [3] (приложение появилось не позднее общего результата, изложенного здесь). Что касается моделей Крипке (конечно, применяемых для теории множеств), то все сказанное выше остается верным и для

них, однако конкретных приложений пока не сделано ввиду громоздкости технических конструкций. Однако с точки зрения метаматематических трудностей доказательства построения моделей указанного типа и здесь не требуется никаких рассуждений, не укладывающихся в рамки теории множеств с интуиционистской логикой с принципом двойного дополнения множеств (в метаматематике этот принцип мы не используем нигде, кроме как для доказательства выполнимости его самого и поэтому он может быть опущен, т.к. классические математики его не признают и тем самым, опуская этот принцип, мы рассуждаем уже внутри нейтральной теории).

В заключение кратко осветим вопрос о доказательстве приведенных выше утверждений. Основная трудность — построение универсума, в котором предикат А оказался бы экстенсиональным. Здесь, конечно, необходима ссылка на работу Майхилла [2], в которой был построен универсум термов с целью доказательства ряда свойств теории ZFI, и который автору удалось сильно модифицировать для построения ряда новых моделей для неклассической теории множеств. Остальная часть доказательства хотя и достаточно технична, но не является трудной (основной момент – кванторы по множественным переменным). Доказательство проводится сначала индукцией по построению, а затем по выводу формулы. Ниже мы приводим построение универсума Δ и метод получения нового г-предиката S из данного г-предиката T.

ЛЕММА 1. $S\phi \Rightarrow T\phi$ (легкая индукция по построению ϕ).

ЛЕММА 2. $\Lambda = S \perp \Longrightarrow S \varphi$ (выполнимость логической аксиомы $\perp \Longrightarrow \varphi$).

OCHOBHAЯ TEOPEMA: ZFIDC выводимо предложение ф⇒Sф.

СЛЕДСТВИЕ. $S(\Lambda,T)$ есть r-предикат.

Не проводя доказательства во всех деталях, рассмотрим выполнимость аксиомы экстенсиональности и схемы выделения. В первом случае необходимо показать, что для произвольных термов р,q,t верно р≈ $q \land (q ∈ t^+ \lor \Lambda) \Rightarrow p ∈ t^+ \lor \Lambda$. Это доказывается разбором случаев с учетом $\Lambda \Rightarrow S \phi$ (напомним, что $\Lambda \Rightarrow T \phi$ для атомарных ϕ и что Л⇒Т⊥). В случае аксиомы выделения берем константу-терм C_{ϕ} ту, для которой выводимо $\forall y(y \in C_{\phi} \Leftrightarrow \phi(y))$, а в качестве второй компоненты берем $X=\{q\in\Delta\mid S\phi(q)\}$. Теперь $t=C_{\phi,X}$ и схема выделения проверяется без труда, однако необходимо доказать экстенсиональность множества X, что использует индукцию по построению формулы ф. Однако в отличие от [2] и [3], необходимо наложить дополнительное требование на предикат Т: если t≈q∧Тφ(q), то Tφ(t). Для ряда конкретных предикатов T это требование удается доказать без дополнительных требований, однако в общем случае это сделать не удалось. Рассматривая доказательство схемы подстановки, отметим, что внешним образом используется также схема подстановки. Остается еще проверить выполнимость схемы є-индукции, аксиомы бесконечности и аксиомы двойного дополнения множеств (аксиомы DC), но это делается по аналогии с [3]. Здесь необходимо отметить, что внешним образом нигде не использовались никакие специальные принципы, кроме DC, а также полный закон исключенного третьего. Таким образом, сохраняется нейтральность доказательства.

Операция получения нового S позволяет также получить все метаматематические результаты, в которых участвует операция Сморинского. Пусть M_i — семейство моделей Крипке для ZFI. Определим модель $M=(\Sigma_i M_i)$ (операция Сморинского): остов M есть прямая сумма логических остовов M_i , с добавлением нового наибольшего элемента а (моменты из разных M_i — несравнимы). Предметная область а определяется стандартно и теперь M — также модель ZFI.

Теперь поступаем так: $T_i \phi \Leftrightarrow x_i \models \phi (x_i - \text{модели } M_i)$ и $S = S(\bot, A, \Pi_i T_i)$, где $A \phi = \phi$ — истинна в стандартной модели (ϕ — атомарное предложение). Тогда $S \phi = a \models \phi$.

Отметим следующее: все приведенные здесь результаты касаются только односортной теории множеств и здесь в качестве приложения можно получить результат из [2] (хотя модель, предложенная в [2], отличается от нашей). Если Тф \Leftrightarrow ZFIDC выводимо ф, то результат Д.Майхилла получается так: пусть ZFIDC выводимо $\exists x \phi(x)$, тогда $S(\exists x \phi(x))$, а теперь найдется терм t такой, что $S \phi(t)$ и, следовательно, $T \phi(t)$, т.е. $Z FIDC \models \phi(t)$ (мы сейчас не различаем t и t, так как в соответствующих теориях они выводимы

одновременно). Свойство дизьюнктивности для теории ZFIDC доказывается аналогично с использованием того же предиката Т. Все остальные результаты, связанные с использованием моделей типа реализуемости и имеющие место для интуиционистской арифметики НА, также могут быть «подняты» на уровень теории множеств, однако технически проше рассматривать теорию множеств с двумя сортами переменных и с интуиционистской арифметикой на первом уровне (см. [3]; в этом случае предикат А, определенный на атомарных арифметических формулах (см. выше), может быть использован так же, как в [1]). Берем в этом случае Ау⇔у истинно в стандартной модели теории множеств ∨ Λ и $T \Leftrightarrow A$, но уже для всех формул, где $\Lambda \Leftrightarrow \exists n(ZFIDC \models \varphi(n, x),$ где х – набор только переменных по множествам. Пусть $S=S(\Lambda,T,T)$. Нам достаточно показать, что $S\perp$ при условии, что ZFI2DC $\vdash \forall n(\phi(n,x) \lor \neg \phi(n,x)) \land \neg \forall n \neg \phi(n,x)$. В силу выводимости второго члена конъюнкции $S \neg \forall n \neg \phi(n,x)$, т.е. достаточно показать $S \forall n \neg \phi(n,x)$ или $\forall n S \neg \phi(n,x)$. Если ZFI2DC выводимо отрицание φ(n,x), выполняется S-φ(n,x) и выполняется требуемое заключение $S \perp \Leftrightarrow \Lambda \Leftrightarrow \exists n(ZFI2DC$ выводимо $\varphi(n,x)$). Если же выводимо $\phi(n,x)$, то S \perp по смыслу. Итак, S \perp верно всегда, т.е. в ZFI2DC выводимо ф(n,x) для некоторого натурального числа п при фиксированных параметрах х. Заметим, что Ѕф выполняется для всякой формулы нашего языка, т.е. отношение S – тривиально, однако наше доказательство допустимости сильного правила Маркова с параметрами только по множествам отнюдь не является тривиальным.

некоторые интересные полученной выше ОСНОВНОЙ ТЕОРЕМЫ и ЛЕММ 1 И 2. Хорошо известно (см. [1]), что принцип Р не является выводимым в интуиционистской арифметике, однако (см. пункт б) ниже) совместим с последней при добавленном тезисе Черча (но не принципе Маркова, даже слабом). Аналогичные результаты можно получить и на уровне теории множеств ZFI2DC (и перенести их затем на односортную теорию множеств ZFIDC). Здесь мы докажем допустимость принципа Р без параметров по натуральным числам, но с параметрами по множествам в ZFI2DC. УТВЕРЖДЕНИЕ: если в ZFI2DC выводимо $\neg \phi \rightarrow \exists y \psi(y)$, то в ZFI2DC выводимо для некоторого натурального п $\neg \phi \rightarrow \psi(n)$. В качестве Л возьмем метапредложение «ZFI2DC выводит ¬¬ф» и пусть $T\psi \Leftrightarrow ZFI2DC$ выводимо $\neg \phi \rightarrow \psi$, а в качестве A-предиката берем Т, ограниченный на атомарные формулы (здесь ф – фиксированное предложение языка теории множеств). Полагаем теперь $S=S(\Lambda,A,T)$. Нетрудно видеть, что T-r-предикат (если выводимо

 $\neg \phi \rightarrow \psi$ и если выводимо $\neg \phi \rightarrow (\psi \rightarrow \eta)$, то, конечно, выводимо $\neg \phi \rightarrow \eta$). Теперь предположим, что выводима формула $\neg \phi \rightarrow \exists y \psi(y)$. В силу ОСНОВНОЙ ТЕОРЕМЫ $S(\neg \phi \rightarrow \exists y \psi(y))$. Нетрудно также видеть, что выполняется $S(\neg \phi)$ (так как $S\phi \Rightarrow S \perp$ и $T(\neg \phi) \Leftrightarrow$ выводимо $\neg \phi \rightarrow \neg \phi$; если $S\phi$, то $T\phi$ и выводимо $\neg \phi \rightarrow \phi$, а это противоречие, следовательно $S \perp$). Следовательно, $S(\exists y \psi(y))$, т.е. $S\psi(n)$ для некоторого натурального n, а тогда $T\psi(n)$, т.е. «ZFI2DC выводимо $\neg \phi \rightarrow \psi(n)$ » для некоторого n, что и требовалось доказать.

В качестве другого интересного приложения рассмотрим следующий результат для ZFI2DC: если формула $\phi(n,x)$ с параметрами по множествам (но без параметров по натуральным числам) разрешима, имеет место выводимость формулы $\forall n(\varphi(n,x) \vee \neg \varphi(n,x)),$ если В ZFI2DC выводимо $\neg\neg\exists n\phi(n,x)\rightarrow\exists n\phi(n,x)$, то в ZFI2DC выводимо $\exists n\phi(n,x)$ или выводимо $\forall n \neg \phi(n,x)$ (далее мы не пишем параметры x, входящие в формулу). Сделаем одно замечание, связанное со спецификой односортной теории ZFIDC: если в ней выводимо $\forall x (\phi(x) \lor \psi(x))$, то в ней выводимо $\forall x \phi(x)$ или выводимо $\forall x \psi(x)$; конечно, в арифметике НА такой результат невозможен. Доказательство: в качестве Λ берем такое утверждение «ZFI2DC выводимо $\forall n \neg \phi(n)$ и полагаем $T\psi \Leftrightarrow ZFI2DC$ выводимо $\exists n\phi(n) \rightarrow \psi$ (как обычно, ϕ – фиксированная формула с одной свободной переменной по натуральнам числам). Теперь определяем $S=S(\Lambda,T,T)$. Легко видеть, что верно $S(\neg \neg \exists n \varphi(n))$ (это доказывается по аналогии с доказательством S(¬ф) в предыдущем приложении). Теперь, если $S(\neg \exists n \varphi(n))$, то в ZFI2DC выводимо $\forall n \neg \varphi(n)$ (это доказывается $S(\neg \exists n \varphi(n)) \Rightarrow$ $T(\neg \exists n \varphi(n))$ \Rightarrow ZFI2DC выволимо $\exists n \varphi(n) \rightarrow \neg \exists n \varphi(n)$, т.е. не может быть выводимо $\exists n \varphi(n)$ (так как мы, конечно, предполагаем, что наша теория непротиворечива), а тогда ZFI2DC выводимо $\forall n \neg \phi(n)$). Так как $S(\neg \neg \exists n \phi(n))$ и так как ZFI2DC выводимо $\neg\neg\exists n\phi(n)\rightarrow\exists n\phi(n)$, то мы получаем $S(\exists n\phi(n))$, и найдется такой n, что $S(\phi(n))$. Теперь делаем разбор случаев: если ZFI2DC выводимо $\phi(n)$, то в ZFI2DC выводимо и ∃n $\phi(n)$, а если в ZFI2DC выводимо $\neg \phi(n)$, то, в силу ОСНОВНОЙ ТЕОРЕМЫ, $S(\neg \varphi(n))$ и, следовательно, $S(\varphi(n)) \Rightarrow S\bot$, но так как имеет место $S(\varphi(n))$, то получаем $S\perp$, и, таким образом, в ZFI2DC выводимо ∀п¬ф(п). Наше УТВЕРЖДЕНИЕ полностью доказано.

Сформулируем также без доказательства два утверждения, которые можно «поднять» на уровень теории множеств ZFI2DC: а) можно построить формулу $\varphi(n)$ с одним параметром по натуральным числам такую, что в ZFI2DC нельзя вывести

 \exists n ϕ (n) \rightarrow \exists n(ϕ (n) \land \forall m(m<n \rightarrow ¬ ϕ (m))) (принцип существования наименьшего числа с данным свойством);

б) можно найти предложение ϕ и формулу $\psi(y)$ с единственным натуральным параметром такие, что в ZFU2DC не выводится $(\neg \phi \rightarrow \exists y \psi(y)) \rightarrow \exists y (\neg \phi \rightarrow \psi(y))$ (упоминавшийся выше принцип P).

ЛИТЕРАТУРА

- 1. *Драгалин А.Г.* Новые виды реализуемости и правило Маркова // ДАН СССР, 1980.- т.251, № 3.- С.534-537
- 2. *Myhill J.* Some properties of intuitionistic Zermelo-Fraenkel set theory // Lecture Notes in Mathematics. 1973. V. 337. P.206-231.
- 3. *Khakhanian V.* The Markov's Rule is admissible in the Set Theory with Intuitionistic Logic // Lecture Notes in Computer Science, 1997. V. 1289. P. 163-167.
- 4. *Smorynski C.A.* Application of Kripke models // Lecture Notes in Mathematics. 1973. V. 344. P. 324-391.