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TERNARY RELATIONAL SEMANTICS  
AND BEYOND:  

Programs as arguments (data)  
and programs as functions (programs) 

1. Introduction 
The purpose of this paper is to review some ideas from Dunn and 

Meyer (1997) and Dunn (2001) and "write them large". The first paper 
showed how to represent combinatory algebras using ternary frames, 
and the second paper showed how to do the same for relation algebras. 
It should be pointed out that these representations both fall under the 
general heading of "gaggle theory", as developed in a series of papers 
beginning with Dunn (1991), in which an n-ary operator is represented 
using an n+1-placed relation. These results were presented in a 
somewhat mathematical fashion, although philosophical motivations 
were introduced as well. The present paper will focus on these 
philosophical motivations and clarify and extend them. In addition it 
will point to some future research directions in connection with Pratt's 
dynamic logic and Hoare's logic of programming. 

2. Frege and Boole 
Frege's famous dictum, expressed as a conundrum, is that "the 

concept horse is not a horse". This is our text for this occasion. 
Frege has three theses that are relevant. These theses are to be 

found scattered about his three papers "Concept and Function", 
"Concept and Object", and "Sense and Reference"2.  

1. A concept is a special kind of function, taking objects as 
arguments and operating upon them to produce a rather unfamiliar 
object (a truthvalue)3. Thesis 1. 

1  School of Informatics, Indiana University, Bloomington IN 47405 (USA), dunn-
@indiana.edu. 

2  Originally published in German in 1892-93 and translated into English in Geach and 
Black (1960). 

3  Frege also had a distinction between two kinds of functions, which we might call, 
using terminology that has become current, intensional and extensional (Frege talked 
rather of functions and their course of values (identifying the latter with sets)). This 
distinction is not important for this paper and we shall ignore it. 
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2. A function is a very different thing than its argument, and in fact 
a function cannot itself ever be an argument (functions are 
"incomplete" whereas their arguments are "complete"). Thesis 2. 

3. A definite description ('the so-and-so') refers to an object. Thesis 3. 
From 3 we conclude: 
4. The definite description `the concept horse' refers to an object. 
From1and 2 we conclude 
5. A concept cannot be an object. 
And so we get something very close to Frege's dictum (but not yet a 

conundrum): 
6. The reference of the definite description `the concept horse' is 

not a concept. 
But the following seemingly obvious principle gives the 

conundrum: 
7. The reference of a definite description `the so-and-so' is the so-

and-so. 
For now we can conclude: 
8. The reference of a definite description `the concept horse' is the 

concept horse. 
And using substitution of identicals, from 6 and 8, we finally 

obtain the conundrum: 
9. The concept horse is not a concept. 
Thus, the concept horse, given the argument Man of War, gives the 

value True, and given the argument Francis (the talking mule) it gives 
the value False. Frege's point is that there is a very distinct difference 
between referring to a function, and using it. Frege liked to talk of 
concepts/functions as complete (saturated) items, and of 
objects/arguments as incomplete (unsaturated) items. 

Perhaps a more contemporary way of making the distinction is to 
say that when we refer to the concept horse by using the phrase "the 
concept horse" we are referring to a static object, and not to the 
function in its full dynamic nature. 

Modern logicians can make this distinction using the lambda 
notation of Church (1941). Thus x + 1 is incomplete, waiting for an 
argument to be input to the variable x, say 2, before producing the 
output value 2 + 1 = 3. Whereas λx(x + 1) is complete and denotes the 
function that applied to an argument x returns the result x +1: It can 
have functions applied to it as an argument. For example, we can apply 
iteration to it so as to obtain λx(x + 2). Frege goes on at length to make 
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this by now familiar distinction, using Greek lower-case letters (he did 
not have the lambda notation, which importantly denotes the scope of 
the binding), writing things such as ξ + 1 to denote the successor 
function. Can the same item be both an object/argument and a concept 
(function)? Frege thought not, but thought that when we want to refer 
to a concept, we end up referring to a close cousin of it which he 
termed a "concept correlate". In this paper we show how to make sense 
of this idea. 

In further motivating this paper, we turn to another one of the 
founders of modern logic, George Boole. Boole (1847) had two 
interpretations of what has now come to be known as Boolean algebra. 
The primary interpretation was that the elements of a Boolean algebra 
are to be thought of as propositions. The secondary interpretation was 
that the elements of a Boolean algebra are to be thought of as sets. 
Boole observed that propositions and sets obeyed the same laws, 
mapping conjunction into intersection, disjunction into union, and 
negation into relative complement. He explained this by observing that 
a proposition can be regarded as the set of cases in which it is true. 
This is the fundamental origin of the idea that a proposition can be 
understood as a set of possible worlds. This latter notion has been 
generalized to the idea that a proposition can be understood as a set of 
information states. These can be partial, and even inconsistent. Total, 
consistent information states are surrogates for possible worlds. Let us 
call this Insight 1. It is the basis of the Carnap-Kripke-Montague-
Stalnaker-et al program of semantics. This might be called a static 
conception of a proposition, since propositions just "sit there" as sets 
of states. 

More recent authors, e.g., Gärdenfors and Makinson (1988) have 
observed that there is also a more dynamic conception of proposition. 
When we add a proposition to our existing set of beliefs, it transforms 
these beliefs into another belief set. Let us call this Insight 2. A belief 
set can be conceptualized to be one gigantic proposition (the 
conjunction of someone's beliefs). So a proposition can be viewed as 
an operator on propositions. This is the dynamic conception of 
proposition. 

Insight 1 and Insight 2 both seem to be correct. How can we 
reconcile them? The quick answer is that a proposition must be 
simultaneously an object (potential argument) and a function. But what 
does this mean? This is the topic which we shall explore throughout 
this paper. 
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3. Von Neumann's concept of a "stored program" 
There is a certain irony in the development of the study of logic 

and computation which has been a hallmark of the twentieth century. 
Although this development has taken place in at least the first half of 
the century in largely the same venues and by largely the same 
pioneers, largely the study of logic as a foundation for mathematics has 
been driven by a desire to respect types, whereas formal systems 
developed for computation are by their very nature type defying. The 
first is clear from the fixation of most of mathematical logic on first-
order logic, despite this a small flirtation with second-order logic, and 
the standard set-theories based on notions of hierarchies (Zermelo-
Frankel, von Neumann-Bernays-Gödel, Morse, Kelly). And the last is 
clear from the fundamental notion of a "stored program" in the "von 
Neumann architecture". John von Neumann, in 1946 wrote a paper 
with Arthur W. Burks and Hermann H. Goldstine titled "Preliminary 
Discussion of the Logical Design of an Electronic Computing 
Instrument" (Burks, et al., 1963). This paper begins by discussing the 
four main components of a computer: the arithmetic logic unit, 
memory, control, and input-output human interface. In other words, the 
arithmetic logic unit, the control unit, and input-output. We quote from 
Riley (1997): 

To von Neumann, the key to building a general purpose device was in 
its ability to store not only its data and the intermediate results of 
computation, but also to store the instructions, or orders, that brought 
about the computation. In a special purpose machine the computational 
procedure could be part of the hardware. In a general purpose one the 
instructions must be as changeable as the numbers they acted upon. 
Therefore, why not encode the instructions into numeric form and store 
instructions and data in the same memory? This frequently is viewed as the 
principal contribution provided by von Neumann's insight into the nature 
of what a computer should be. 

He then defined the control organ as that which would automatically 
execute the coded instructions stored in memory. Interestingly he says that 
the orders and data can reside in the same memory "if the machine can in 
some fashion distinguish a number from an order" [Burks, et al., p. 35]. 

And yet, there is no distinction between the two in memory. The 
control counter (what we now usually call the program counter) contains 
the address of the next instruction, and that word is fetched to be executed. 
Whatever the control unit "believes" to be an order or to be data is treated 
as such. One ramification of this is that the instructions can operate upon 
other instructions, producing a self-modifying program. This has not been 
considered good form for many years, because of the implications for 
program debugging and the desire for reentrant code in some situations. It 
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is possible that new developments in artificial intelligence may bring fresh 
attention to the possibilities afforded by this characteristic [Bishop 1986].  

While von Neumann and his co-workers deserve the credit for 
specifying the broad outlines of the contemporary electronic computer, 
there is an important presaging in the work of Turing in his proof that 
there could be a universal computing machine, where he used the idea 
of coding up the machine tables of other Turing machines in terms of 
numbers that could then be used as input to the universal machine. 

The feature that we wish to draw attention to here is the fact that in 
a general purpose computer, a program can be either function or 
argument, depending on context. There is a similar feature in the λ-
calculus of Church (1941), or the combinatory logic of Curry and Feys 
(1972), where an expression such as KI, or (λxλyx)( λxx) treats the 
first term as a function and the second term as an argument. Indeed one 
can have a term of the form MM, say II or 4.( λxx)( λxx), which treats 
the very same term M as simultaneously standing for both a function 
and an argument. So much for types! 

The contrast during the first fifty year or so of the twentieth 
century between the type conscious mainstream in mathematical 
foundations, and the type insensitive undercurrent in the logic of 
computation is quite striking. It reminds one of the (likely apocryphal) 
stories of early aviation theorists proving the impossibility of powered 
flight while the Wright brothers and others were working first on 
models, and then on real airplanes. 

4. The Routley-Meyer Semantics for Relevance Logic 
We make what might seem a side trip, to discuss the so-called 

"Routley-Meyer semantics" for relevance logic4, but we shall see in the 
next section that it is closely related to our main journey. It is well-
known that Routley and Meyer (1972, 1973) provide a "Kripke-style" 
semantics for relevance logic using a ternary accessibility relation R5. 
Ignoring negation, a Routley-Meyer frame is a structure (U, R, 0) with 
R ⊆ U3 and 0 ∈ U. A Routley-Meyer model adds an atomic "forcing 
relation" ||-0 between states and atomic sentences (α.||-0 p). This can be 

4  Anderson, Belnap, and Dunn (1992) contains a good discussion of this semantics, 
including variants due to Urquhart and Fine discussed below. 

5  There is an alternative "operational semantics" that we could be using. The ternary 
relation Rαβγ is replaced using a binary operation on states α + β = γ (Urquhart) or 
else α + β š  γ (Fine). The first has also been used by Girard (1987) in the "phase 
space" semantics for linear logic. The last is more general, extending as it does to 
allow an underlying distributive lattice. Cf. Anderson, Belnap, and Dunn (1992) for 
details. Cf. also Dofišen (1992). 
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extended inductively to provide a "forcing relation" between states and 
compound sentences. Thus for relevant implication they have the 
following (χ, α, β range over U)6: 

χ |= ϕ → ψ   iff (∀α, β : Rχαβ & α ||- ϕ imply β ||- ψ).  (1) 
They also gave a truth condition for "fusion" (intensional 

conjunction): 
χ |= ϕ ° ψ   iff  ∃α, β(Rαβχ & α ||- ϕ & β ||- ψ).   (2) 

Routley and Meyer thought of U as "set ups". A "set up" is like a 
Carnapian state description except it can be inconsistent and/or 
incomplete. Routley and Meyer also thought of U as something like a 
set of possible worlds, but with the thought that these can be 
partial/and or incomplete. We shall continue to use the more neutral 
and trendy word "state", anticipating applications to computers. 

Given the Carnap-Montague-Kripke idea of a "proposition" as a set 
of possible worlds, a sentence ϕ can then be taken to be interpreted as 
the "proposition" || ϕ || = {α : α ||- ϕ}. 

Using propositions, we can rephrase the truth conditions above as: 
|| ϕ → ψ || = || ϕ || ⇒ || ψ || =def {χ : (∀α, β : Rχαβ & α ∈ || ϕ ||  

imply β ∈ || ψ ||)}            (3) 

|| ϕ ° ψ || = || ϕ || / || ψ || =def {χ : ∃α, β(Rαβχ & α ∈ || ϕ || &  
β ∈ || ψ ||)}             (4) 

1. There are several things about this semantics that must be 
mentioned: 

2. Implicit in this semantics is a relation α š  β (Routley and 
Meyer would write "a<b") which can be defined as R0αβ: The 
"Hereditary Condition" (adopted from intuitionistic logic) 
imposes the requirement that if α ∈ || ϕ || and α š  β, then β ∈ || 
ϕ ||. This in effect says that a proposition is not just any set of 
states, but rather one that is closed upwards under š . It is 
natural to regard this as "the information order". 

3. Validity is defined not by reference to arbitrary states (as in the 
Kripke semantics for modal logic and intuitionistic logic), but 
rather by reference to the "zero states". Also it is a bit of an 

6  In the definition below Routley and Meyer make the first position the "pivot", but 
there is no reason why the second point cannot be the pivot. Then we get χ |= ψ ← ϕ 
iff (∀α, β : Rαχβ & α ||- ϕ imply β ||- ψ). In previous papers I have often reversed 
these arrows for reasons of wanting to match a convention of residuation theory due 
to Pratt. 
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accident that Routley and Meyer pick out one such. In general 
terms it does not hurt to add a set of them, Z ⊆ U. 

4. The above observations motivate our defining a (ternary) frame 
as a structure F = (U, R, š , Z), with š  a partial-order on U 
subject to the condition that ∃ζ∈Z(Rζαβ) iff α š  β iff 
∃ζ∈Z(Rαζβ) (Z-condition). 

5. Validity in a frame (|=F ϕ) is then defined as: ∀α∈U, ∀ζ∈Z : ζ 
||- ϕ. And validity in general (|= ϕ) is defined as validity in all 
frames (∀F, |=F ϕ). 

6. Every frame gives rise to an algebra of propositions A(F) = 
(℘↑(F), ∧, ∨, ⇒, /, Z). The carrier set ℘↑(F) is just the set of 
propositions A ⊆ U, i.e., subsets of U closed upwards under š . 
∧ and ∨ are respectively intersection and union, and ⇒ and / 
are defined as above. Z is of course simply the set of zero states 
Z of the frame. 

 
Remark 1. Urquhart (1972) had a simpler idea about how to model 
relevant implication. His idea was to have a set U of "pieces of 
information" α, β, χ, … Urquhart included the least (empty) piece of 
information ∅ used to define validity. Urquhart postulates that the 
pieces of information can be combined by a semi-lattice operation ∪. 
For this reason it is common to refer to Urquhart's approach as the 
"operational semantics", and to call the contrasting Routley-Meyer 
approach the "relational semantics". While there are problems in 
trying to extend Urquhart's idea to provide a semantics for the whole 
of the system R of relevant implication (conjunction is ok, but both 
disjunction and negation cause problems), Urquhart showed that we 
can model the implicational fragment R→ with the following: 

χ |= ϕ → ψ  iff  (∀α : α ||- ϕ  imply χ ˜  α ||- ψ).  (5) 
Remark 2. The essential difference between the operational and 
relational semantics can be put in terms of the former assuming 
determinism: Given the state χ and the input α there is a unique 
outcome χ(α) = χ ˜  α. The relational semantics rather assumes that 
there can be many accessible outcomes χ(α) = {β : Rχαβ}. 
 
Remark 3. Fine (1974), independently from Routley, Meyer, and 
Urquhart, developed a semantics for relevant implication that in effect 
combined their two ideas. In place of Rαβγ Fine writes: α°β ≤ γ. We 
will call the Fine approach the "refined semantics" because it makes 
explicit the binary operation implicit in the Routley-Meyer semantics. 
If you look at the Routley-Meyer completeness proofs and at the 
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canonical model of theories, one sees that they have an operation 
combining theories and also the relation of inclusion between theories. 

 
There are many different ways to interpret these semantical ideas. 

Thus for example think of χ as a "proof" of φ → ψ. In terms of the 
operational semantics, χ determines a function taking proofs of φ to 
proofs of ψ. In the relational semantics, χ determines a relation from 
proofs of φ to proofs of ψ. 

I suggested verbally (and it is referenced in the first Routley-Meyer 
paper) that one somehow think of Rραβ as akin to Kripke's relative 
accessibility relation, but relativized one step further. Rather than 
saying that β is possible relative to α, we save that given ρ that β is 
possible relative to α. In the early 1970's, Peter Woodruff (verbally to 
me) suggested thinking of the ternary relation R as an indexed set of 
binary relations {Rρ}ρ∈U, where each Rρ = {<α, β>: Rραβ}. It is a 
short metaphorical step from this to the observation that one can think 
of each state ρ as having a dual nature, first as a state and second as 
determining a binary relation Rραβ between states α and β. This can 
be given the "philosophical" reading: "the pair <α, β> exemplifies the 
relation (determined by) ρ". Also it can be directly related to Frege's 
distinction between "concept" and "object". We think of ρ as the 
"object correlate" of the relation Rρ. We can take the further 
metaphorical step of thinking of the state ρ as "static", and the relation 
Rρ as "active". We are within a hair's breadth of von Neumann's 
concept of a stored program7! 

5. Interlude on Indeterminism  
A theory is simply a set of sentences closed under adjunction and 

(relevant) entailment. It is easy to see that theories behave well with 
respect to conjunction. A theory contains a conjunction iff it contains 
each conjunct. But once we add disjunction, theories lose respect. 
While a disjunction is in a theory when either disjunct is, the converse 
does not hold. It is standard to call a theory where the converse holds 
prime. Given two theories T and T', it is natural to form their "fusion" T 
° T'. This is done by considering the set of sentences of the form ϕ ° ϕ' 
where ϕ ∈ T and ϕ' ∈ T', and closing it under adjunction and 

7  We have therefore several reasons to regard Frege as a proto computer scientist. 
Skipping this anticipation of the idea of a "stored program", and passing quickly over 
the issues of formal logic and its relations to computer science, we get to the 
important fact that Frege received funding from Zeiss (told to me by Werner 
Stelzner). Corporate support is one of the most important marks of a computer 
scientist. 
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entailment. Even when both T and T' are prime, their fusion is unlikely 
to be prime. This is because of the R-theorem: 

(ϕ → ψ) ° ϕ → ψ. 
In particular ϕ → ψ1 ∨ ψ2 might be in T and ϕ might be in T', and 

so ψ1 ∨ ψ2 would end up in their fusion T ⋅ T'. And yet there is no 
reason that either one of ψ1 or ψ2 should end up there8. 

This is why when we look at the canonical model we focus on the 
ternary relation Rαβγ rather than the binary operation α • β. In Fine's 
terms this is α • β ≤ γ, i.e., T • T' ⊆ T'', where T, T', and T'' can all be 
prime. In the proof of the completeness theorem we build prime 
extensions of T • T' in various possible ways, and in some of these 1 is 
true and in others of these ψ2 is true. 

6. Interpretation 
We like to give Rραβ the "technological" reading: if the machine is 

currently in state ρ, then if it were to enter state α, then state β is a 
potential outcome (the pair <α, β> is a possible transition given ρ). 

The reader may wonder why we need this ternary relation of 
accessibility, and not just a binary one, which is more usual. And 
indeed provides the framework for Pratt's dynamic logic. It might be 
worth investigating how to extend dynamic logic to involve the ternary 
accessibility relation. 

It might be argued that if α is a state, then all the information that is 
relevant to possible transitions is contained in α alone, and so there is 
no reason to consider the "perspective" of ρ. Indeed, on a deterministic 
conception of computation, the initial state would uniquely determine 
all of the subsequent states. But this objection overlooks the fact that 
we are working with partial states. One might think of this partiality in 
terms of segregating parts of the machine so in considering Rραβ we 
think of ρ as a state in that part of the machine that stores operations, 
and α and β as states in that part of the machine that stores data. Or 
one might think in terms of concurrent computing, with ρ being the 
state on one processor, and α and β being states in another processor 
(or complexes of processors including maybe the whole system) whose 
operation is affected by ρ. This kind of approach leads to the idea that 
states are of different types, and we are here wanting a type-free 
system. But we think it is worth exploring typed systems as well, 
particularly the division between operations and data. The information 
in α may well be partial and the information in ρ may further restrict 

8  Because the following is not an R-theorem:  
(ϕ → ψ1 ∨ ψ2) → (ϕ → ψ1) ∨ (ϕ → ψ2). 
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the states β that are accessible from α. Note that states may even be 
inconsistent. Think of a network where there are two machines that are 
supposed to be mirror sites but by some glitch they are not. Readers 
who are bothered by the thought of partial or inconsistent states should 
be reminded that states exist at the "logical", as opposed to the 
"physical" level. Two states of different machines can be identical even 
though there are hardware differences between the two machines, and 
of course this can also be true of the same machine at two different 
times. 

One way to look at things is that we are somehow combining ρ and 
α and seeing whether this combination is contained in β: ρ + α š  β. 
The simplest mode of combination would just be in effect to take their 
"union" ρ∨α. Thus thinking of a state as an assignment of the binary 
bits 0 or 1 to variables, a variable xi will be assigned one of these 
values by ρ∨α if either ρ or α assigns it that value. This is the minimal 
requirement on a "union". But oops! What happens if say ρ assigns xi 
the value 1 and α assigns it 0? One could imagine various answers here 
as to what value ρ + α assigns. E.g., it could assign no value, it could 
assign an error message, it could assign some principled choice (say, 
when in doubt take the maximum), or, most radically but perhaps most 
naturally for the concept of a "union", we give up on the idea that 
assignments are consistent and let it assign both values. But if we 
require that the assignments ρ, α and β must be consistent, one of the 
most interesting things to do is to take the maximum. This ensures to 
Rραβ ρ š  β and α š  β, which as can be seen from Dunn (1993c) gives 
a ternary accessibility relation which provides the basis for a semantics 
for intuitionistic implication. 

There is a related ternary relation in Barwise (1993). Barwise uses 
the notation s1 |→c s2 to indicate the 3-placed relation that exists when 
the two "sites" s1 and s2 are connected by the "channel" c. In the 
notation of Routley and Meyer this could be expressed as Rs1cs2. 
Channels hence determine binary relations between sites, but they need 
not be identified with those relations. 

Barwise leaves explicitly open the idea that sometimes channels 
can be sites and vice versa. What we have in our representation of 
relation algebras is the totally "untyped" case where every site is a 
channel and vice versa. 

7. The main idea  
I wish to give here the main idea. Suppose we have a ternary frame 

with a set of states U, and a subset A of U. A can be thought of as a set 
of states, i.e., a proposition. So A is quite static. But, and this is than 

291 



main idea, it can be turned in for the set of relations determined by 
those states, and those relations can of course be regarded as taking 
states to states. So A is at the same time quite dynamic. Here we model 
the duality implicit in von Neumann's concept of a stored program, or 
Frege's distinction between concept and object/function and argument. 
One and the same thing can be both. 

Given a state ρ ∈ U, Rρ = {<α, β>: Rραβ}. By R[A] let us mean 
the set of relations determined by A, i.e., R[A] = {Rα : α ∈ A}. 

Suppose we have two such propositions A and B. We can turn A in 
for the set R[A] of relations which it determines, and similarly we can 
get R[B]. We can then do various things with R[A] and R[B]. Thus as 
one example we can take R[A] and "apply" it to B: 

R[A](B) = {γ : ∃α ∈ A, ∃β ∈ B(Rαβγ)}, 
getting all the states we can get to from B using a relation in R[A]; 
treating A as a program, B as data, and applying A to B. We shall return 
to this idea in the next section when we examine how to model 
combinatory logic. 

This uses only the implicit relation character of A. But we can use 
the implicit relational character of both A and B; taking the relations in 
R[A] and the relations in R[B] and forming their relative products in all 
possible ways. Let us recall that given two relations R and S their 
relative product is defined by 

x(R ⊗ S) ⇔ ∃u(xRu & uRy). 
So we define 

R[A] ° R[B] = {Rα ⊗ Rβ : α ∈ A, β ∈ B}. 
This is like viewing both A and B as programs, and composing A 

with B : A ⋅ B. We shall return to this idea in a short while when we 
examine how it can be used in the representation of relation algebras. 

8. Models for combinatory logic  
Dunn and Meyer (1997) gives particularly simple models for 

combinatory logic based on the Routley-Meyer ternary semantics for 
the relevance logic R9. Various conditions have to be put on the ternary 
accessibility relation to get models for the logic R. It is well-known by 
now that by fussing with those conditions one can get models for 
various logics closely related to R. 

9  As is spelled out in Dunn and Meyer (1997), other models for combinatory logic 
have been provided by various researchers, including D. Scott, G. Plotkin, and R.K. 
Meyer, M. Bunder and L. Powers. 
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We illustrate this with a simple example. The logic R has the 
"contraction axiom" 

(ϕ → (ϕ → ψ)) → (ϕ → ψ), 
which corresponds to Gentzen's "structural rule" of contraction: 
 

Γ, ϕ, ϕ, ∆ |- ψ 
––––––––––––. 
  Γ, ϕ, ∆ |- ψ 
 
This amounts to saying that ° "duplicates", i.e., A ° B ⊆ (A ° B) ° B. 

On the accessibility condition we need the postulate: 
Rαβγ ⇒ ∃χ(Rαβχ & Rχβγ). 

In a more or less obvious diagram this becomes: 
 
 

 γ       γ 
 

 
α      β ⇒   •         β 

 
 

    α         β 
 
 

We choose to algebraize the combinators as a combinatory poset, 
i.e., as a partially-ordered groupoid (X, ≤, °, C), where X is thought of 
as a set of untyped functions, ≤ is a partial order on X (thought of as 
"reducibility"), ° is a binary isotonic operator on X (thought of as 
"application"), and C ≤ X10. C is thought of as a set of combinators, and 
we shall call its members combinator elements. Each combinator 
element c ∈ C is subject to some postulate of the form 

 cx1 … xm  ≤ τ(x1, …, xm),     (6)  
where cx1 … xm are variables, ° is indicated by concatenation, the 
sequence cx1 … xm is a left-associated sequence, i.e. is of the form 
(((cx1)x2)) … xm), and τ(x1, …, xm) is a term constructed only out of 

10  Note that we use ≤ where Curry and Feys (1972) use ≥. Note also that we do assume 
the usual conventions of suppressing ° in favour of juxtaposition, and assuming 
associativity to the left. 
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the variables x1, …, xm (not necessarily all of them) and °11. τ(x1, …, 
xm) can be regarded as a sequence containing some or all of the 
variables x1, …, xm, with parentheses scattered through it so as to 
indicate binary grouping of any pattern. 

As examples consider a few of the more common combinators: 
 ix ≤ x (7) 
 kxy ≤ x  
 cxyz ≤ xzy  
 wxy ≤ xyy  
 bxyz ≤ x(yz) (8) 
 sxyz ≤ (xz)(yz)  

The notion of a combinatory poset is similar to the notion of a 
"combinatorial algebra" in Barendregt (1981), except that he bases 
things throughout on equality rather than the inequality, and his 
combinators are required to be S, K. 

It is well-known that contraction corresponds to the combinator W. 
Using inclusion in place of reduction, the postulate for that combinator 
is WAB ⊆ ABB. If we view W, A, and B as sets of states, we need the 
following postulate: 

∃m ∈ W, ∃χ(Rmαχ & Rχβγ) ⇒ ∃χ(Rαβχ & Rχβγ) 
The left-most terminus is "kicked out of the way" by the 

combinator state m: 
 
 

 γ       γ 
 

     • 
      β ⇒   •         β 

 
∃m   α 
          α         β 
 

 

11  Because of the form of these laws, the combinator elements correspond to what have 
been called "proper" combinators (cf. Curry and Feys (1972), and which may 
beviewed as closed lambda terms. We donotbother with the more accurate but more 
awkward terminology "proper combinator poset". 
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Conditions can thus be put on ternary frames that force various 
subsets to behave like combinators12. 

Using this method it was shown in Dunn and Meyer (1997) that 
every combinatory algebra can be represented using an appropriate 
ternary frame. 

9. Models for the algebra of relations  
In Dunn (2001) it was shown how to represent relation algebras using a 
modified version of Routley-Meyer frames that are not unlike those 
they used to model relevance logic13. We will not repeat definitions 
here, but part of the trick was to give a carefully layered definition of 
relation algebras that showed the close connections to relevance logic 
and which matched a carefully layered definition of the appropriate 
Routley-Meyer frames. 

We begin with the notion of lattice-ordered monoid (L, ≤, ∨, °, e), 
where (L, ≤, ∨) is a lattice and (L, ≤, ∨, °, e) is a monoid, with ° 
distributing over ∨ from both directions. It follows that ° is isotone in 
each of its arguments. 

We recall that a l.o.m. is said to be residuated if it had two 
additional binary operators → and ← (called the right and left 
residuals) satisfying: 

x ° y ≤ z  iff  y ≤ x → z  iff  x ≤ z ← y.   (9) 
De Morgan and Peirce observed in the last century that these 

structures arise naturally in the context of the algebra of relations (cf. 
e.g., Maddux (1991)). We think of relations in the usual way as sets of 
ordered pairs. Given a set X and two binary relations R and S on X, the 
relative product R ° S = {(x, y) : ∃z((x, z) ∈ R & (z, y) ∈ R)} is an 
associative operation, and e is the identity relation (restricted to X). 
Then R → S = {(x, y) : ∀z((z, x) ∈ R implies (z, y) ∈ R)} and S ← R =  
{(x, y) : ∀z((x, z) ∈ R implies (y, z) ∈ R)}. 

But relative product and the residuals are not the only important 
operations on relations. There is also the converse R–1 = {(y, x) : (x, y) 
∈ R)}. Given a lattice, a unary operation x–1 (which we shall think of as 

12  Alternatively, if one is interested not just in one-way reduction but rather equality of 
combinators, one can define a combinator as a set of states satisfying a given 
condition. For example: 
W = {m : ∃χ(Rmαχ & Rχβγ) ⇒ ∃χ(Rαβχ & Rχβγ)}.  

13  As explained in detail in Dunn (2001), it was pointed out to me by R. Maddux that 
this idea was foreshadowed by Lyndon, and by Jénsson and Tarski, although my 
treatment is more explicit and general and makes the connections to relevance logic 
and other substructural logics. 
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"conversion") is an automorphism of period two when it is a 1-1, order 
preserving, and of period two. i.e., (x–1)–1 = x. 
Definition 4. A structure (L, ∧, ∨, °, →, ←, –, –1, e) is a relation 
algebra iff 

(L, ∧, ∨, –) is a Boolean algebra,   (10) 
(L, ∧, ∨, °, →, ←, e) is a residuated lattice ordered monoid,  (11) 

x–1 is a lattice automorphism of period two on (L, ∧, ∨), (12) 
(x ° y) –1 = y–1 ° x–1 .     (13) 

a → b = –(a–1 ° –b),  b ← a = –(–b ° a–1).   (14) 
The above definition derives from Tarski (1941), and can be found in 
Dunn (2001). This definition is presented in a way that makes it similar 
to the definition of a Boolean De Morgan monoid, which is the 
algebraic structure corresponding to the relevance logic R supple-
mented with Boolean negation in addition to its standard De Morgan 
negation. These structures were in effect introduced by Meyer and 
Routley (1973) and studied more explicitly as algebraic structures by 
Meyer (1979), where he explicitly introduced an operator x*. Meyer 
observes that one can then define the usual De Morgan complement 
from the Boolean one and the * operator as follows: 

~x = –(x*).      (15) 
Putting –1 in place of * we get: 

~x = –(x–1) 
which was anticipated as a definition of a negation-like operator by 
Białynicki-Birula and Rasiowa (1957). 

14 above does not look very pretty from a logical point of view, but 
it can be replaced equivalently with: 

a → b = ~(~b ° a),  b ← a = ~(a ° ~b).  (16) 
The only differences between a Boolean De Morgan monoid and a 

relation algebra is that for a De Morgan monoid we assume in addition 
that ° is commutative and square increasing (x ≤ x ° x). This last 
corresponds to contraction. 

Next we turn to the ternary frames appropriate to representing 
relation algebras. We start with a plain vanilla ternary frame F = (U, R, 
š , Z) and add to it a unary map ∪ on U into itself such that for χ ∈ U.  

χ∪∪ = χ   (period two).     (17) 

296 



Such a map is commonly called an involution14. We also add 
(writing χˇ in place of χ∪). 

Rαβγ  only if  Rβˇαˇγˇ (tagging).   (18) 
Rαβγ iff Rγˇαβˇ (antilogism)    (19) 

Let us define for A ∈ P(U)↑, 
A–1 = {αˇ : α ∈ A}.     (20) 

By virtue of (17), this is equivalent to: 
A–1 = {α : αˇ ∈ A}.     (21) 

This does not yet give us the class of frames appropriate for 
relation algebras, because we have to assure that ° is associative. 

Let us begin by looking at two notational conventions of Routley 
and Meyer: 

R(αβ)γδ =def ∃χ(Rαβχ & Rχγδ),   (22) 
Rα(βγ)δ =def ∃χ(Rαχδ & Rβγχ).   (23) 

Routley and Meyer actually write "R2" where we write simply "R" 
above, but for reasons of both suggestiveness and simplicity we shall 
often simply let the number of terms affixed tell that there is a power. 

One of the requirements on a Routley-Meyer frame is that these 
two compositions are equivalent: 

R(αβ)γδ  iff Rα(βγ)δ     (24) 
This is precisely what is needed to assure that 

A ° (B ° C) = (A ° B) ° C  (associativity) 
In this section we shall depart from our convention of viewing the 

binary relation hidden inside a ternary relation as indexed by the first 
state. For reasons that have nothing to do with anything but making 
things look pretty we shall view it as indexed by the second state15. So 
in this section only, Rρ = {(α, β) : Rαρβ}. 

Let us define the composition of two "binary relations" ρ and σ: 
α(Rρ ⊗ Rσ)β  iff  ∃χ(Rαρχ & Rχσδ) 

Clearly using this definition and R-associativity, we obtain 

14  Following Routley and Meyer, this involution is customarily denoted by * in the 
relevance logic literature. Here we instead use ∪ because in the literature on relations 
* is customarily used for the "ancestral". 

15  This has something to do with the mathematical tendency to use infix notation for 
relations and prefix notation for functions. 
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α(Rρ ⊗ Rσ)β  iff  R(αρ)σβ  iff  Rα(ρσ)β,    (25) 
where the right-hand sides of the last two conditions are understood 
using the compositional notations of Routley-Meyer. One could write 
(25) as 

α(Rρ ⊗ Rσ)β  iff  R(ρσ)αβ.    (26) 
but one should be clear that "(ρσ)" is a mere notation and does not 
denote an actual point. 

The above expresses what one might label a "notional 
homomorphism". But it can be made into an actual homomorphism if 
we "refine" the Routley-Meyer relation into smaller bits, in effect 
interpreting Rαβγ as α • β š  γ. We can the restate ?? as: 

Rρ•σ = Rρ ⊗ Rσ. 
We can also easily see that 

Rρˇ = (Rρ)–1. 
Proof. αRρˇβ iff Rαρˇβ (antilogism) Rρˇβˇαˇ iff (tagging period 

two) Rβρα  iff  βRρˇα  iff α(Rrˇ)–1β. 
It turns out that one can show that λρRρ is a one-one function 

taking states to binary relations on states, using the Z-Condition in the 
definition of a frame. So we in fact have an isomorphism preserving 
"relative product" and "converse") between states and binary relations. 

Lyndon (1950) showed that not every relational algebra can be 
interpreted as a set of relations, but using the observations above we 
can easily show that this can be done one type-level higher. Given a set 
of states A, let RA = {Rα : α ∈ A}. For any frame U, we have just 
observed that RU is closed under relative product and converse and is 
in one-one correspondence with U. This means that we can give "point-
wise" definitions: RA ° RB = {(Rα ⊗ Rβ) : α ∈ A, β ∈ B} and RA

–1 = 
{Rα

–1 : α ∈ A}. Note further that RA ∩ RB = RA∩B, RA∪B = RA ∪ RB, 
and RU–A = RU – RA. 
Theorem 5. Every relation algebra (A, ∧, ∨, –, °, –1) is isomorphic to a 
set of sets of relations, with ∧ interpreted as union, ∨ as intersection, – 
as complement relative to a certain subset of ℘(U × U), and ° being 
point-wise relative product, and –1 being point-wise converse. 

10. Glimpses Ahead: Pratt's Dynamic Logic and Hoare Logic 
Proof. V. Pratt (1980) makes a distinction between states and 

programs and defines things such as [p]φ to mean intuitively that the 
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sentence φ is true of every state α that arises while the program p is 
executing. 

In symbols we express this as 
χ ||- [p]φ  iff  ∀β(χRpα ⇒ β ||- φ),     (27) 

where χRpα is read "the state α is accessible from state χ by running 
the program p". Note that Rp is an accessibility relation indexed by the 
program p. Pratt assumes a non-deterministic notion of computation or 
else this could be replaced by the notion p(χ) = α. 

As we have seen, any state ρ can be thought of as determining an 
accessibility relation Rρ. Note this is "rho" not "pee" – we are talking 
about a state and not a program. Pratt's dynamic logic has accessibility 
relations indexed by programs. A state can be viewed as an assignment 
to variables (storage location) of the values 0, 1. If we focus on the 
substate where the program is stored we get a partial assignment. Since 
thus a program can be viewed as a partial state, using ρ in place of p 
generalizes Pratt. 

Another way to go is to look at a program as not a single (partial) 
state but rather as a set of states (intuitively the set of states that 
implement the same program). This suggests we write 27 in an untyped 
way, replacing the single state ρ with a set of states (a proposition) B. 
We can then rephrase the above as: 

χ ||- [B]φ  iff  ∀α, ∀ρ ∈ B(χRpα ⇒ α ||- φ), 
and we can rephrase this further, replacing the proposition B with the 
sentence ϕ that expresses it: 

χ ||- [ψ]φ  iff  ∀α, ∀ρ ∈ |ψ| (χRpα ⇒ α ||- φ), 
where |ψ| = B = {β : β ||- ψ}. 

Another possible application of ternary frames is to Hoare's (1969) 
"Logic of Programs", but we only mention this here. It would also be 
nice to model action algebras (cf. Pratt (1991)). 
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