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CLASSICAL MULTIPLICATIVE LINEAR  
LOGIC  INTUITIONISTIC MLL 

Abstract. It is known how to present every deduction in the {!, I}-free 
Classical Multiplicative Linear Logic as (the result of an obvious translation 
of) a deduction in the intuitionistic MLL. We extend the result to the language 
with I and give short proofs which do not use proof nets.  

1. Introduction 
One of the most important computational interpretations of logical 

proofs uses intuitionistic logic and Curry-Howard isomorphism 
between natural deduction and lambda terms. One of the goals of linear 
logic [2] was to provide an improved proof-theoretic model of 
computation which ensures uniqueness of the normal form of a 
derivation by means of a new formalism of proof nets, which works 
even for classical linear logic and provides a lot of symmetry. More 
traditional computational interpretation uses intuitionistic linear logic 
(cf. [3]) which admits a form of Curry-Howard isomorphism [7]. The 
results in the literature [10, 1] show how to present every deduction in 
the {!, I}-free Classical Multiplicative Linear Logic as (the result of an 
obvious translation of) a deduction in the intuitionistic MLL. We 
extend the result to the language with I and give short proofs which do 
not use proof nets.  

Let us remind that the most important applications of linear logic 
in algebra depend on the language of MLL with the constant I, cf. [5, 6, 
8]. 

Formulas of the !-free Classical Multiplicative Linear Logic 
CMLL are constructed from literals (propositional variables p, q, p', …, 
constant I and their negations p, I) by the tensor product ⊗ and par 
connective ℘. Derivable objects of CMLL are sequents, i.e. multisets 
of formulas. CMLL is axiomatized as follows.  
Axioms  p, p I,…,I,p, p,    I 
Inference rules  

⊗        Γ, A     ∆, B                 ℘     Γ,  A,  B 
           Γ, ∆, A ⊗ B                          Γ, A℘B  

Formulas of the Intuitionistic Multiplicative Linear Logic IMLL 
are constructed from propositional variables and constant I by linear 
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implication ô  and tensor product ⊗. Derivable objects of IMLL are 
sequents Γ⇒A, where Γ is a  multiset of formulas and A is a formula. 
IMLL is axiomatized as follows.  
Axioms    p⇒p I,…,I, p⇒p,  ⇒ I 
Inference rules   

Γ ⇒ A   ∆ ⇒ B                 Γ ⇒ A   ∆, B ⇒ C 
 Γ, ∆ ⇒ A ⊗ B                   AôB, Γ, ∆ ⇒ C  
Γ,  A ⇒ B                            A, B, Γ ⇒ C 
Γ ⇒ AôB                            A⊗B, Γ ⇒ C  

We prove (Theorem 2 below) that every deduction in the classical 
MLL is (the result of an obvious translation of) a deduction in the 
intuitionistic MLL up to natural isomorphisms  

p⊗Ip   I I℘I      (1)  
and involution, i.e. interchanging p andp for some variables p. This 
suggests using ordinary lambda-terms to describe CMLL since Curry-
Howard isomorphism holds for usual typed lambda-terms and IMLL 
[7].  Our translation from CMLL into IMLL has an inverse * described 
in the section 3. Both of them completely preserve the structure of the 
derivation tree. This shows that every derivation in CMLL is 
essentially a derivation in IMLL. Moreover, one can fix the goal 
formula in an arbitrary way. This constitutes one of the differences 
with the negative translation of the traditional classical propositional 
logic  into intuitionistic logic. The negative translation adds new 
negations with the corresponding antecedent and succedent rules and 
levels down important distinctions in the original formula.  

This paper incorporates some suggestions of the referee of a 
previous version.  

2. Reduction of CMLL to the balanced I-free fragment 
A formula or sequent is balanced if each propositional variable 

occurs there exactly twice, once positively, once negatively. An 
instance of a formula or derivation is a result of substituting some 
propositional variables by formulas. I-instance is obtained when all 
these formulas are just I. The following well-known proposition (cf. 
[5]) provides a reduction to balanced sequents.   
Lemma 1 Every derivation d in CMLL is an instance of a derivation of 
a balanced sequent. 
Proof. Every occurrence of a propositional variable in the last sequent 
of d is traceable to a unique occurrence in a unique axiom of d. Replace 

133 



occurrencies traceable to different occurrencies of axioms by distinct  
variables. � 

Note. p→p&p is a counterexample for additive linear logic and 
the classical propositional calculus. 

The next reduction eliminates multiplicative constants.  
Lemma 2 Every derivation in CMLL is an I-instance of an I-free 
derivation of a balanced sequent up to transformations.  
Proof. Consider given derivation d: Γ of a balanced sequent Γ in 
CMLL. Every occurrence of I in Γ is traceable to a unique occurrence 
of I in an axiom. If it comes from one of the first occurrences ofI in an 
axiom I, …, I, p, p, replace these occurrences of I by q1, …,qn 
and the last p by p⊗q1…⊗qn for distinct  fresh variables q1, …, qn 
(and make the same replacement for all occurrences traceable to these). 
If it is one of the last two occurrences inI, …,I,I, I or in I, I, replace 
both occurrences by a fresh variable q. If it is an occurrence in an 
axiom I, replace it byq℘p for a fresh q.  � 

3. Derivations of IMLL-sequents 
Consider the standard translation of IMLL into CMLL: 
                                                         –   =   

  (Γ⇒∆)* := Γ, ∆  
where 
                                =                –     – 
 A ⊗ B:= A℘ B; AôB:=A ⊗ B; A:=A; A℘B:= A ⊗ B  
and induced translation of derivations. Double negation over ∆ is 
inserted to replace the linear implication AôB byA℘B. As a warm-up 
consider the case when involution is not needed. Note that ∆ below is 
allowed to contain arbitrary many formulas.  
Theorem 1 If Γ∆ are multisets of formulas of IMLL and d: (Γ⇒∆)* is 
a derivation in CMLL, then ∆ consists of one formula and d≡e* for 
some e: Γ⇒∆ in IMLL.  
Proof. Induction on d. If d is an axiomp, p orI,p, p then ∆≡p and e 
is p⇒p or I, p⇒p. If lastrule(d)=⊗ then   

Γ1,  ∆1′, A   Γ2, ∆2′, B              Γ1, ∆1, A   B,Γ2, ∆2  
    or        
   d:  Γ, ∆′, A ⊗ B                          d:   A ⊗B,Γ, ∆   

In the first case ∆1′≡∆2′≡∅ by the induction hypothesis (IH), and one 
has e: Γ⇒A⊗B. In the second case ∆1≡∅ and ∆1≡∆ consists of one 
formula, so that e: AôB, Γ⇒∆:  
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Γ1 ⇒ A    Γ2 ⇒ B                 Γ1 ⇒ A   Γ2, B ⇒ ∆ 
                   or         

  e:  Γ ⇒ A ⊗ B                         e:  AôB, Γ ⇒ ∆  
Finally, if the lastrule(d)=℘, one has:  

 Γ, ∆,A,  B                          Γ, A ⇒ B    
                                    

d:Γ, ∆,A℘B                     e:  Γ ⇒ AôB  
since ∆1≡∅, or  

 A, B, Γ,  ∆                   A, B, Γ ⇒ ∆ 
                                 

d:A℘B,Γ, ∆                e: A⊗B, Γ ⇒ ∆ 
� 

4. General case 
Theorem 2 For every balanced I-free sequent of CMLL and its 
derivation d: Σ, C in CMLL there are formulas (intuitionistic 
translations) Σ1, C1 in IMLL, an involution ι and a deduction e: Σ1 ⇒ 
C1 in IMLL (all depending of the choice of C) such that d≡e*ι.   
 
Proof. Induction on d. The case d≡p,p is obvious. Consider subcases 
depending of the lastrule(d) and a position of C. Let lastrule(d)=⊗ and 
C is the principal formula:  

f: Γ, A   g: ∆, B  
d: Γ, ∆, A ⊗ B  

Then by IH there are f1: Γ1⇒A1, g1: ∆1⇒B1 and involutions ι′, ι′′ 
such that f≡f1

*ι′, g≡g1
*ι′′. Note that propositional variables in the 

premises are distinct, and define: ι:=ι′∪ι′′,   
f1: Γ1⇒ A1   g1: ∆1⇒ B1     

                          
 e:  Γ1, ∆1 ⇒ A1 ⊗ B1  

Remaining cases are similar.  
  Γ, A, C    ∆, B                   Γ1,A1 ⇒ C1   ∆1 ⇒ B1 

                                  
d: Γ, ∆, A ⊗ B, C                e: Γ1, ∆1, B1ôA1 ⇒ C1  

 Γ,  A,  B              Γ1,A1 ⇒ B1                      Γ1,B1 ⇒ A1 
                       or           
d: Γ, A℘B          e: Γ1 ⇒A1ôB1                  e: Γ1 ⇒B1ôA1 
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In this case one can choose arbitrarily between two possible 
”witchings” of A℘B.  

Γ,  A,  B,  C                 Γ1,A1,B1 ⇒ C1 
                              

d: Γ, A℘B, C             e: Γ,A1 ⊗B1 ⇒ C1 

� 

Conclusion 
Let us sum up. 
For every derivation d: C in CMLL one has a derivation 

Int(d):⇒C1 in IMLL and an involution ι such that d(Int(d))*ιθ and 
CC1

*ιθ for some substitution θ. 
Moreover, for I-free balanced formula C the derivation Int(d) 

depends only of C. 
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