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Abstract: The paper is the contribution to quantum toposophy focusing on the abstract
orthomodular structures (following Dunn-Moss-Wang terminology). Early quantum topo-
sophical approach to “abstract quantum logic” was proposed based on the topos of functors
[E, Sets] where E is a so-called orthomodular preorder category — a modification of categor-
ically rewritten orthomodular lattice (taking into account that like any lattice it will be a
finite co-complete preorder category). In the paper another kind of categorical semantics
of quantum logic is discussed which is based on the modification of the topos construction
itself — so called quantos — which would be evaluated as a non-classical modification of
topos with some extra structure allowing to take into consideration the peculiarity of nega-
tion in orthomodular quantum logic. The algebra of subobjects of quantos is not the Heyting
algebra but an orthomodular lattice. Quantoses might be apprehended as an abstract re-
flection of Landsman’s proposal of “Bohrification”, i.e., the mathematical interpretation of
Bohr’s classical concepts by commutative C*-algebras, which in turn are studied in their
quantum habitat of noncommutative C*-algebras — more fundamental structures than com-
mutative C*-algebras. The Bohrification suggests that topos-theoretic approach also should
be modified. Since topos by its nature is an intuitionistic construction then Bohrification in
abstract case should be transformed in an application of categorical structure based on an
orthomodular lattice which is more general construction than Heyting algebra — orthomod-
ular lattices are non-distributive while Heyting algebras are distributive ones. Toposes thus
should be studied in their quantum habitat of “orthomodular” categories i.e. of quntoses.
Also an interpretation of some well-known systems of orthomodular quantum logic in quan-
tos of functors [E,QSets] is constructed where QSets is a quantos (not a topos) of quantum
sets. The completeness of those systems in respect to the semantics proposed is proved.
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1. Introduction

If following M. Dunn, L. Moss and Z. Wang [Dunn et al., 2013] we divide
the history of quantum logic into three eras or “lives” then the first life featur-
ing Birkhoff and von Neumann’s algebraic approach in the 1930’s should be
called “concrete quantum logic” [Birkhoff, Neumann, 1936]. It was the period
of the atomic, non-distributive, orthomodular Hilbert lattice of projections on
an infinite dimensional Hllbert space. The second life that began in the late
1950’s and blossomed in the 1970’s should be called “abstract quantum logic”
because focusing on the abstract orthomodular structures. And the third life of
recent developments in quantum logic coming from its connections to quantum
computation and should be called “computational quantum logic”.

But this qualification is not accurate since in modern literature we can
find investigations dealing both with category theory and quantum logic that
impell us to speak of one more life of quantum logic — “categorical quantum
logic”. Here the subject may be the categorical (topos) foundations for the-
ories of phisycs (cf. e.g. [Isham, Doring, 2007]), sometimes it is the logic of
strongly compact closed categories with biproducts [Abramsky, Duncan, 2004],
the category of sheaves over a quantaloid (a quantum topos) (cf. [Crane, 2007])
etc. In case of “topos quantum logic” (quantum toposophy) we face with the
explotation both “concrete” and “abstract” quantum logic approaches.

In particular, in [Landsman, 2017, p.461] the topos under consideration
is a topos T(A) of functors F

¯
: C(A) → Sets, i.e., T(A) = [C(A),Sets] where

A is a unital C*-algebra (in Sets), with associated poset C(A) of all unital
commutative C*-subalgebras C ⊂ A ordered by inclusion. C(A) is regarding as
a (posetal) category, in which there is a unique arrow C → D iff C ⊆ D and
there are no other arrows. Since for any poset X we have an isomorphism of
categories [X,Sets] ' Sh(X), then we obtain T(A) ' Sh(C(A)). Moreover, for
any small category C an internal C*-algebra in the associated presheaf topos
[Cop,Sets] is given by a contravariant functor A

¯
: C → CA, where CA is the

category that has C*-algebras as objects and homomorphims as arrows (but
this is not true for internal C*-algebras on sheaf toposes T = Sh(X)).

More abstract approach is proposed in [Vasyukov, 1989], [Vasyukov, 2005]
by means of the topos of functors [E,Sets] where E is a so-called orthomodu-
lar preorder category — modification of a categorically rewritten orthomodular
lattice (taking into account that like any lattice it will be a finite co-complete
preorder category). In fact, this a lattice preorder category with the functor
rendering the orthocomplementation properties. More formally:

Definition 1. An ortho preorder category E is a preorder category equipped
with the contravaruant functor N

¯
: E→ E such that
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(i) E has an initial object 0 and a terminal object 1;

(ii) E has finite products 〈−,−〉 and finite co-products [−.−];

(iii) N
¯

2a ∼= a for any object a in E;

(iv) 〈a,N
¯
a〉 ' 0, [a,N

¯
a] ' 1 for any object a in E;

(v) N
¯

[a, b] ' 〈N
¯
a,N
¯
b〉,N

¯
〈a, b〉 ' [N

¯
a,N
¯
b〉] for any two objects a, b in E.

An ortho preorder category E is an orthomodular preorder category when in
addition the following condition is satisfied:

(vi) if a→ b is an arrow in E then [a, 〈N
¯
a, b〉] ' b for any two objects a, b in E.

It is instructive that K. Landsman in his book “Foundations of Quantum
Theory” [Landsman, 2017] writes that the topos-theoretic approach to quantum
mechanics from his point of view encompasses quantum logic. But he at once
remarks that if one adheres to the doctrine of classical concepts, then quantum
logic turns out to be intuitionistic and hence distributive, rather than ortho-
modular. This is tightly connected with Bohr’s doctrine of classical concepts
that in the systems to which the quantum mechanical formalism is to be ap-
plied their quantum mechanical treatment will for this purpose be essentially
equivalent with a classical description.

Landsman’s proposal of “Bohrification”, i.e., the mathematical interpreta-
tion of Bohr’s classical concepts by commutative C*-algebras, which in turn
are studied in their quantum habitat of noncommutative C*-algebras, sug-
gests that topos-theoretic approach also should be modified. Noncommutative
C*-algebras are more fundamental structures than commutative C*-algebras.
The same concerns orthomodular lattices which are more general than Heyt-
ing algebras underlined intuitionistic logic — orthomodular lattices are non-
distributive while Heyting algebras are distributive ones. Since topos by its
origin is an intuitionistic construction then “Bohrification” in this case should
be transformed in an application of categorical structure based on orthomodular
lattice. Toposes thus should be studied in their quantum habitat of “orthomod-
ular” categories.

The construction of the topos [E, Sets] where E is a categorically treated or-
thomodular lattice from [Vasyukov, 2005] would be regarded, in a sense, as an
embedding of quantum logic (based on orthomodular lattice) into intuitionistic
universe since Sets is a topos. Does we always need an intuitionistic universe as
the basis of quantum logic considerstions? More natural seems the exploitation
of categories having quantum logic as its inner structure. There are formu-
lations of quantum set theories (cf., e.g. [Takeuti, 1981]) which differ from
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classical ZF set theory and this allows one to think that such sets does not
generate a topos. In this case [E,QSets] (where QSets is a category of quantum
sets) does not be a topos and the interpretation above fails.

Following this line the construction of quantos is introduced which would
be evaluated as a non-classical modification of topos with some extra structure
allowing to treat the peculiarity of negation in quantum logic. The category
QSets turns out to be a quantos and it is proved that the category [E,QSets] be
a quantos too. The systems of quantum logic are intrpreted in both types of
quantoses in more natural way then it was done in case of [E, Sets]. In a sense,
quantoses should be considered as a quantum categorical universe for quantum
logic considerations.

The well-known Goldblatt’s, Nishimura’s and Cutlend-Gibbins’ systems of
quantum logic are interpreted in a topos [E,QSets]. This interpretation is exten-
ded to the system of quantum logic by G. Hardegree with Sasaki arrow playing
the role of quantum conditional.

2. Quantoses

To interpret quantum logic in more natural way we will introduce a special
kind of non-standard categories more suitable for interpretation of quantum
logics because of their “orthomodular” structure.

A quantos should be considered as a topos equipped with some additional
structure. One might equally exploit the name “quantum topos” or “ortho-
modular topos” which are more informative on the peculiarities of its inner
structure.

Definition 2. A quantos Q is a topos which is also complementary closed and
orthomodular one.

Complementary closedness here means that

(i) for any object a of Q there is an object a′ such that

for any arrow f : a→ d of Q we have a mono f ′ : a′ → d, a′′ ∼= a,

for any arrow g : a→ b of Q there is an arrow g : b′ → a′;

(ii) a + a′ ∼= 0, a × a′ ∼= 1 (with, possibly, binary coproducts and products) for
any object a in Q;

(iii) (a+ b)′ ∼= a′ × b′, (a× b)′ ∼= a′ + b′ for any two objects a, b in Q.

Othomodularity means that

(iv) for any pair of objects a, b of Q there are objects
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a ⊃1 b ∼= (a′ × b) + (a′ × b′) + (a× (a′ + b))

a ⊃2 b ∼= (a′ × b) + (a× b) + ((a′ + b)× b′)
a ⊃3 b ∼= a′ + (a× b)
a ⊃4 b ∼= b+ (a′ × b′)
a ⊃5 b ∼= (a′ × b) + (a× b) + (a′ × b′)
such that

a ⊃i b ∼= ba (1 ≤ i ≤ 5).

The last point gives us a “polinomial exponentiation” in Q because we will
have five evaluation arrows ev : a ⊃i b× a→ b (1 ≤ i ≤ 5).

Proposition 1. In quantos Q the collection Sub(d) of all Q-arrows that are
monic with d as codomain is an orthomodular lattice.

Proof. Since any quantos Q is a topos then for any object d in Q the collection
Sub(d) of all Q-arrows that are monic with d as codomain will be preordered
bounded lattice. The points (i)–(iii) of the definition 2 transform this collection
into ortholattice (cf. [Dalla Chiara, Giuntini, 2002, p. 137]) and point (iv) leads
to Sub(d) be an orthomodular lattice (cf. [Dalla Chiara, Giuntini, 2002, p. 142]).

�

It is easily can be seen that in quantos we have Sub(d) ∼= Hom(d,Ω) and
thus Hom(d,Ω) will be an orthomodular lattice. But in this case the problem
arises concerning the category Sets. The matter of fact is that in Sets we have
Sub(D) ∼= P(D) where P(D) = {x : x is a subset of the set D}. Since P(D)
is a Boolean algebra of subsets and not the orthomodular lattice of sets, then
we come to the conclusion that Set cannot be a quantos. But according to
[Dalla Chiara, Giuntini, 2002, p. 144] (using the dual version of the theorem)
or lemma 2.1.1 from [Vasyukov, 2005, p. 39] a lattice E+ = (E+,⊆,∗ ) of ∗-
closed quasi-hereditary sets is an orthomodular lattice of sets and thus there
are some sets which form such an algebra. So, either such sets generates the
subcategory QSets of Sets or Sets is, in a sense, a subcategory of QSets.

G.Takeuti [Takeuti, 1981] in 1981 has been developed an important applic-
ation of quantum logic to set theory. He constructed an orthomodular-valued
model for set theory where the set of truth-values is supposed to have the
algebraic structure of a complete orthomodular lattice instead of complete
Boolean algebras in case of the usual Boolean-valued models. The standard
axioms of set theory hold in orthomodular-valued model only in restricted form.
Since the collection of all sets, plus ∅, V,∩,∪,C (where V = {x : x = x} and
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xC = {y : y /∈ x}) form in ZF a complete Boolean algebra then it is easy
to check that an algebra of sets in Takeuti’s quantum set theory will be an
orthomodular lattice. Then it seems attractive to consider category QSets as a
category whose objects are exactly sets from an orthomodular-valued model.

Proposition 2. QSets is a quantos.

Proof.[Sketch of proof] For any set I we will have an orthomodular lattice
of ∗-closed quasi-hereditary subsets (I+,⊆,∗ ,∅, [I)) where I+ ⊆ P(I). If we
consider inclusion functions as arrows then we can define [x) ≤ [y) iff [x) ↪→ [y)
and put [x)′ = [x)∗ for complementary closedness. Thus, we can conclude that
in QSets we have Sub(d) ∼= P(d) and Sub(d) will be an orthomodular lattice
and so do P(d). But in this case we cannot take 2 as the classifying object
exploiting the property that P(d) ∼= 2d because this gives rise to the Boolean
algebra of characteristic arrows as in Sets. Moreover, we need to take into
account that we deal with the orthomodular-valued sets in the universe V E

which is constructed as V E =
⋃

ν∈On
V (ν), where

V (0) = ∅;

V (ν + 1) = {g : g is a function and Dom(g) ⊆ V (v) and Rang(g) ⊆ E);

V (λ) =
⋃
ν<λ

V (ν), for any limit-ordinal λ.

(Dom(g) and Rang(g) are the domain and the range of function g, respect-
ively)

It means that given an orthomodular universe V E for any formula α
we should define the truth-value ‖α‖σ in a complete orthomodular lat-
tice E as induced by any interpretation σ of the variables in the universe
V E . Hence, for any y ⊆ d unlike the usual definition of the character-

istic arrow χy(x) =

{
1, if x ∈ y
0, if x /∈ y

in Sets we have χy(x) = ‖x ∈ y‖σ =∨
g∈Dom(σ(y))

{σ(y)(g)∧‖x = z‖σ[z/g]} in QSets (cf. [Dalla Chiara, Giuntini, 2002,

p. 177]). This means that as the classifying object in QSets we should take not
the two-element Boolean algebra but an orthomodular lattice E.

So, we have P(d) ∼= E together with the function true : 1 → E (such that
true(∅) = 1) playing the role of the subobject classifier in QSets. Also we have
respectively an arrow false : 1→ E (such that false(∅) = ∅). �

Now we define truth-arrows in quantos in general case. Let us Q will be
a quantos with the subobject classifier true : 1 → Ω. Then the negation
¬ : Ω→ Ω will be the unique arrow for which the diagram
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false1> - Ω

¬
?
1 - Ω

?

true

will be the pullback in Q. Thus, ¬ = χ
false

. Given f : a � d, the orthocom-
plement of f (relative to d) is the subobject f ′ : a′ � d whose character is ¬◦
χf . Thus f ′ is defined to be the pullback

f ′a′> - d

¬ ◦ χf
?
1 - Ω

?

true

of true along to the ¬◦ χf , yielding χf ′ = ¬◦ χf , by definition.
Since quantos is a topos then conjunction truth-arrow will be defined stand-

ardly:
∩ : Ω×Ω→ Ω is a character of the product of arrows 〈true, true〉 : 1→ Ω×Ω

in a quantos Q.
As to the disjunction arrow then it is not a primitive and should be defined

by means of negation and conjunction arrows.
Finally, we can define conditional taking ⊃: Ω×Ω→ Ω in the usual way as

a character of the monic e : ~� Ω× Ω, which is an equalizer of the pair

Ω× Ω
∩
⇒
pr1

Ω

where pr1 is a projection on the first member of the product Ω×Ω. But since
our conditional is defined via polynomial exponentials then we, as consequnce,
will have not one but five conditionals.

3. Interpretation of Quantum Logic in quantoses

R. Goldblatt in his paper Semantic analysis of orthologic [Goldblatt, 1974]
treats logics as not a set of well-formed formulas but as the collection of their
ordered pairs satisfying certain closedness condition. Logics of such a type he
calls binary ones. They are characterized by the class of orto-, orthomodular
lattices in terms of A ` B iff v(A) ≤ v(B) where v is a function from the set
of well-ordered formulas into an ortholattice in which connectives ¬ and ∧ are
interpreted as an orthocomplementation and a lattice meet respectively. His
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system O of orthologic characterized by the class of ortholattice is defined by
means of the following axiomatics:

Axioms. (1) α ` α (2) α ∧ β ` α
(3) α ∧ β ` β (4) α ` ¬¬α
(5) ¬¬α ` α (6) α ∧ ¬α ` β

Rules. (7)
α ` β β ` γ

α ` γ
(8)

α ` β α ` γ
α ` β ∧ γ

(9)
α ` β
¬β ` ¬α

Here α ` β means informally that β can be inferred from α.This notation can
be extended to Γ ` α where Γ is a set of well-formed formulas and putting that
Γ ` α iff for some β1, β2, . . . , βn ∈ Γ we have β1 ∧ β2 ∧ · · · ∧ βn ` α.

One can pass from an orthologic O to quantum orthologic OM which is
characterized by the class of orthomodular lattices while employing the defini-
tion α ∨ β =def ¬(¬α ∧ ¬β) and adding to O one more axiom

(10) α ∧ (¬α ∨ (α ∧ β)) ` β

Regarding Goldblatt’s binary relation as an analogue of Genten’s natural
deduction H. Nishimura [Nishimura, 1980] elaborated sequential system GO
for orthologic and GOM for quantum logics with ∧ and ¬ as the primitive
connectives. His formulation of GOM is as follows:

Axioms. α ` α

Rules.

Γ→ ∆

Π,Γ→ ∆,Σ
(extension)

Γ1 → ∆1, α α,Γ2 → ∆2

Γ1,Γ2 → ∆1,∆2
(cut)

α,Γ→ ∆

α ∧ β,Γ→ ∆
(∧ →)

β,Γ→ ∆

α ∧ β,Γ→ ∆
(∧ →)

Γ→ ∆, α Γ→ ∆, β

Γ→ ∆, α ∧ β
(→ ∧)

Γ→ ∆, α

¬α,Γ→ ∆
(¬ →)

Γ→ ∆

¬∆→ ¬Γ
(→ ¬)

α,Γ→ ∆

¬¬α,Γ→ ∆
(¬¬ →)

Γ→ ∆, α

Γ→ ∆,¬¬α
(→ ¬¬)
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We come to the sequential system GOM by adding to GO the following
rule:
¬β → ¬α α, β →
¬α→ ¬β

(OM)

The cut-elimination theorem fails for GO and GOM but the following claim
is true: if the sequent Γ→ ∆ (where ∆ is not empty) is provable then for some
α ∈ ∆, Γ → α is provable too. This claim leads, in particularly, to the
normalization theorem which is proved for both systems.

Unfortunately, it is known that Nishimura’s calculus have two defects:

1. in quantum logic connectives ∧ and ∨ usually are dual ones while this
is not true for Nishimura’s calculus (sequential calculus is dual iff for all
finite Γ and ∆ we always obtain ` Γ→ ∆ iff ` Γ∗ → ∆∗ where for α we
obtain α∗ by replacing ∧ with ∨and the other way round; for a set Γ of
formulas we obtain dual set Γ∗ = {γ∗ : γ ∈ Γ} but we need to take into
account that such replacing in case of quantum logics supposes the choise
of just one of the connectives ∧,∨ as a primitive).

2. this calculi is non-regular in that sense that the condition Γ1, . . . ,Γn →
∆1, . . . ,∆n iff Γ1 ∧ · · · ∧ Γn → ∆1 ∨ · · · ∨∆n fails.

N.J. Cutland and P.F. Gibbins [Cutland, Gibbins, 1982] proposed a regular
sequent calculus of quantum logic which is free of those shortcomings but in
which unlike Nishimura’s calculus the usual cut- rule is not accepted.

Axiomatics of their system GO† which is an extension of Nishimura’s system
GO is as follows:

Axioms. α ` α

Rules.

Γ→ ∆

Θ,Γ→ ∆,Σ
(extension)

Γ→ α,∆1 α→ ∆2

Γ→ ∆1,∆2
(cut-1)

Γ1 → α Γ2, α→ ∆

Γ1,Γ2 → ∆
(cut-2)

α,Γ→ ∆

α ∧ β,Γ→ ∆
(∧ →)

β,Γ→ ∆

α ∧ β,Γ→ ∆
(∧ →)

Γ→ α Γ→ β

Γ→ α ∧ β
(→ ∧)†

α→ ∆ β → ∆

α ∨ β → ∆
(∨ →)†
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Γ→ ∆, α

Γ→ ∆, α ∨ β
(→ ∨)†

Γ→ ∆, β

Γ→ ∆, α ∨ β
(→ ∨)†

Γ→ α

Γ,¬α→
(¬ →)†

Γ→ ∆

¬∆→ ¬Γ
(→ ¬)

α,Γ→ ∆

¬¬α,Γ→ ∆
(¬¬ →)

Γ→ ∆, α

Γ→ ∆,¬¬α
(→ ¬¬)

Rules with the sign † are specific rules of GO†. We obtain the system of
quantum logic GO†M by adding Nishimura’s rule of orthomodularity, that is
GO†M = GO† + (OM).

To describe an algebraic semantic of all those calculi we need to introduce
some concepts.

Firstly consider the concept of hereditary sets in an orthomodualr lattice
E. For any element p the hereditary set [p) is defined by the equality

[p) = {q : p ≤ q}.
An orthocomplementation ⊥ in E is an involutive permutation where b⊥ ≤

a⊥ whenever a ≤ b (a, b ∈ E). It is known (cf. [Birkhoff, 1967]) that in
orthomodular lattices an every interval [a, b] is an orthomodular lattice closed
under ∧,∨ and relative complementation c′ = (a∨c⊥)∧b = a∨(c⊥)∧b. For the
hereditary sets an upper limit of interval is 1 and therefore c′ = (p ∨ c⊥) ∧ 1 =
p∨ c⊥. Hence, the set E+ of all hereditary sets will be the set of orthomodular
lattices.

To transform the lattice E+ = (E+,⊆) into an orthomodular lattice we
need to define an orthocomplementation. In fact, this procedure should specify
an involutive operation on E+. From the definition of orthocmplementation
it follows that if c′ = p ∨ c⊥ then c′ ∈ [p). Thus it seems natural to define
[p)′ as a set of such c that c′ ∈ [p). In this case p ≤ c⊥ but this is exactly
the definition of an orthogonality relation since it is specified by the request
that a ⊥ b whenever a ≤ b⊥. It is known that the relation of orthogonality is
symmetric and irreflexive.

Now we define x ⊥ Y iff for any y ∈ Y , x ⊥ Y and then introduce an
operation ∗ by means of the definition:

(i) [p)∗ = {x : x ⊥ [p)}.

A set X is to be called closed relative to ∗ if (X∗)∗ = X.
But from the definition (i) it follows that [p)∗ = ∅ because 1 ∈ [p) and x ⊥ 1

if x ≤ 0 i.e. x = 0. To avoid this let us modify the definition of hereditary sets
in the following way: [p) = {q : p ≤ q & q 6= 1}.
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Such sets usually are called quasi-hereditary ones but in order not to over-
burden the terminology we retain the original term (of heredutary sets). It is
easy to reformulate all previous definitions taking into consideration the limit-
ation accepted.

Lemma 1. A lattice E+ = (E+,⊆,∗ ) of ∗-closed hereditary sets is an ortho-
modular lattice.

Proof. A partially ordered by inclusion set of hereditary sets is a bounded dis-
tributive lattice whose meets and joins are specified by respective set-theoretical
operations ∩ and ∪ Hence, (E+,⊆,∗ ) will be a lattice with respect to ∩ and
∪. Then in virtue of closedness under ∗, symmetry and irreflexivity of the or-
thogonality relation ⊥, [p)→ [p)∗ will be an involution while (E+,⊆,∗ ) be an
ortholattice (cf. [Birkhoff, 1967]). Since an every distributive lattice is a mod-
ular one and every modular ortholattice is an orthomodular one then (E+,⊆,∗ )
will be an orthomodular lattice too.

Observe, that resulted ortholattice will be, in fact, a Boolean algebra. But
we can also define E+ as a non-distributive orthomodular lattice. To that end
we can take advantage of the following definition:

X t Y = (X∗ ∩ Y ∗)∗.
It is known that in general case (X∗ ∩ Y ∗)∗ > X ∪ Y . It is easy to see that
(E+,⊆,t,∩,∗ ) is an ortholattice. A necessary and sufficient condition for or-
thomodularity of E+ is the following: if [x) ⊆ [y) and [x)∗ ∩ [y) = ∅ then
[x) = [y). The proof of the satisfiability of dual condition in E+ would be
found in [Beran, 1984, p. 171]. In fact, we have been obtained a construction
which is dual to Janovitz’s embedding [Beran, 1984, p. 173]. �

Note, that in proof of the lemma 5 in fact two lattices E+
1 and E+

2 are
figured, the former of which is a distributive while the latter is a non-distributive
one. In the sequel we will be mean by E+ the latter.

Lemma 2. A lattice [p)+ of all ∗-closed hereditary sets in [p) is an orthomodular
lattice.

Proof. It is sufficient to put [c)∗p = [c)∗∩ [p). Then in respect to that operation
an interval [∅, [p)] will be an orthomodular lattice (cf. [Birkhoff, 1967]). �

The relational semantics of all calculi above is described by means of the
notions of ortho-, quantum frames and models.
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Definition 3. An orthoframe is a pair 〈X,⊥〉, where

1. X is a non-empty set,

2. ⊥ is an orthogonality relation on X.

Definition 4. An orthomodel is a triple 〈X,⊥, v〉, where

1. 〈X,⊥〉 is an orthoframe,

2. v is a function assigning to each propositional variable p a ∗-closed subset
v(α) ⊆ X.

Definition 5. A quantum frame is a triple 〈X,⊥,Ψ〉, where

1. 〈X,⊥〉 is an orthoframe,

2. Ψ is a non-empty cillection of ∗-closed subsets of X such that

(a) Ψ is closed under set intersection and the operation ∗,
(b) for any Y.Z ∈ Ψ, Y ⊆ Z and Y ∗ ∩Z = ∅ implies Y = Z.

Definition 6. A quntum model is a 4-tuple 〈X,⊥,Ψ, v〉 where

1. 〈X,⊥,Ψ〉 is a quantum frame,

2. v is a function assigning to each propositional variable p a ∗-closed subset
v(α) from Ψ.

It is easily to be seen that in role of the collection of ∗-closed subsets of X
in an orthomodular lattice E+ would be chosen especially since the condition
(b) from the definition 9 is satisfiable in E+ (this follows from the fact that
in ortholattices a ≤ b & a⊥ ∧ b = 0 ⇒ a = b is the necessary and sufficient
condition of orthomodularity (cf. [Birkhoff, 1967])).

The quantum model should be defined as a model M = 〈E+, v〉 with the
quantum frame E+ (here E+ substitutes for the notation 〈E,⊥, E+〉) where
v : Φ → E+ is some E-valuation and Φ is a set of propositional formulas. A
valuation v : Φ0 → E of the system OM in orthomodular lattice E assigning to
an every propositional letter πi some truth-value V (πi) ∈ E. It uniquely would
be extended in a following way

(1) v(¬α) = v(α)⊥;
(2) v(α ∧ β) = v(α) ∧ v(β)〉;

to the function v : Φ → E. The sentence α such that v(α) = 1 for every
E-valuation v is called E-valid and this is denoted as E |= α.
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Theorem 1. For any orthomodular lattice E we have `OM,GOM,GO†M α iff
E |= α.

Proof. From left to right we check immediately E-validity of all OM-axioms
and rules (GOM, GO†M ). For obtaining the proof of the claim from right
to left we putting into the correspondence to each element x of an algebra
E the hereditary set [x). Thus, we obtain an algebra E+ which will be an
orthomodular lattice. Then we define E+-valuation as a function vc : Φ0 → E+

by means of the formula valuation vc(πi) = [v(πi)). The rest is standard. �

Let us define now an interpretation of the system considered above in an
arbitrary quantos Q. The truth-value in quantos we will call an arrow of the
type 1→ Ω and the collection of all such Q-arrows will be the set Q(1,Ω).

Q-valuation will be a function V : Φ0 → Q(1,Ω) assigning to an every pro-
positional variable πi some truth-value V (πi) : 1→ Ω. This function apparently
might be extended to the set Φ of all formulas:

(a) V (¬α) = ¬ ◦ V (α);

(b) V (α ∧ β) = ∩ ◦ 〈V (α), V (β)〉;

Thus, we extend the valuation V in such a way that to each sentence α corres-
ponds some Q-arrow V (α):1 → Ω . Q-validity of α (which is denoted Q |= α)
means that V (α) = true : 1→ Ω for all V .

Since in quantos we have Sub(d) ∼= Hom(d,Ω) then Sub(d) ∼= Q(d,Ω), i.e.
bringing into correspondence with some subobject f its character χf we transfer
the structure of orthomodular lattice from Sub(d) on Q(d,Ω). The connection
between quantos semantics and theory considered as in case of Heyting algebra
(cf. [Goldblatt, 1979]) consists in that for any quantos

Q |= α iff Q(1,Ω) |= α iff Sub(1) |= α

Hence, the validity in any quantos Q is equal to the validity in orthomodular
lattice Q(1,Ω) and Sub(1). This implies the following theorem:

Theorem 2. If `OM,GOM,GO†M α then for any quantos Q we have Q |= α.

Proof. Let α be some OM−, GOM−, GO†M -theorem. Then α is valid in
orthomodular lattice by the theorem 11. In particular, Q(1,Ω) |= α from
where Q |= α according to the previous claim. �

In orthomodular lattice an introduction of implication as conditional con-
nective is problematic by many reasons (cf. [Dalla Chiara, Giuntini, 2002, p.
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146]). One of the best approximation for a material conditional in quantum lo-
gic is so-called Sasaki arrow (or Sasaki hook) which was originally proposed by
P. Mittelstaedt and P.D. Finch and was further investigated by G. Hardegree.
Sasaki arrow is usually introduced by the following definition:

(SH) a→S b = a⊥ ∨ (a ∧ b)

In fact, it is an algebraic counterpart of our a ⊃3 b. Sasaki arrow has the
following interesting properties [Hardegree, 1981, p. 4]:

(c1) if a ≤ b then a→S b = 1;

(c2) a ∧ (a→S b) ≤ b;

(c3) b⊥ ∧ (a→S b) ≤ a⊥;

(c4) a ∧ b⊥ ≤ (a→S b)
⊥;

(c5) there is a binary operation + such that for any a, b, c we have a + b ≤ c
iff a ≤ b→S c.

An operation + would be defined in orthomodular lattice by means of the
following identity:

(S) a+ b = (a ∨ b⊥) ∧ b

In essence, (c5) corresponds the residuation a ∧ b ≤ c iff a ≤ b → c in
Boolean and Heyting algebras which allows to consider them categorically as
Cartesian closed finitely cocomplete preorder categories. But it is easily can
be seen that in orthomodular lattice one might also define exponentiation with
Sasaki arrow playing the role of exponential.

Lemma 3. An orthomodular lattice with Saski arrow categorically should be
considered as Cartesian closed finitely cocomplete preorder category.

Proof. One might take as exponential Sasaki arrow from the definition (SH).
An evaluation arrow ev : (a→S b)→ b is defined according to (c2). From (c5)
we obtain that for any arrow g : c+ a → b there is an arrow ĝ : c → (a →S b)
(here + is an operation from (S)). But c ≤ a → b implies c ∧ a ≤ a ∧ (a → b)
(the isotone property of ≤) hence an existence of ĝ implies an existence of the
arrow c × a → (a →S b) × a. By the property of ∧ we have c ≤ (c ∨ a⊥) and
then in virtue of the isotone property of ≤ we have c ∧ a ≤ (c ∨ a⊥) ∧ a but in
categories this leads to an occurence of an arrow c× a→ c+ a.
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In fact, we obtain a diagram

ev(a→S b)× a - b

6

c× a - c+ a

6

In virtue of the transitivity of ≤ from c × a ≤ c + a, c + a ≤ b we obtain
c × a ≤ b i.e. we rebuild the diagram to exponential one required. Hence,
an orthomodular lattice categorically is Cartesian closed in respect to Sasaki
arrow. �

G. Hardegree in [Hardegree, 1981] proposed a system of orthomodular
quantum logic OMC where the only primitive connections are the conditional
⊃ (corresponding to the Sasaki hook on orthomodular lattice) and the constant
’false’ f . This logic to be a smallest subset of formulas satisfying the following
clauses:

(A1) ` x ⊃ [(x ⊃ y) ⊃ x]

(A2) ` [(x ⊃ y) ⊃ x] ⊃ x

(A3) ` [(x ⊃ y) ⊃ (x ⊃)] ⊃ [(y ⊃ x) ⊃ (y ⊃ z)]

(A4) ` [(x ⊃ y) ⊃ (y ⊃ x)] ⊃ {[(x ⊃ z) ⊃ (x ⊃ y)] ⊃ [(x ⊃ z) ⊃ (y ⊃ z)]}

(A5) ` f ⊃ x

(R1) If ` x, and ` x ⊃ y, then ` y.

(R2) If ` x, then ` y ⊃ x.

The expression ’` x’ is short for ’x ∈ OMC’ which is read ’x is a thesis of
OMC’. The competeness of OMC is proved by yielding the Lindenbaum-
Tarski algebra for OMC which appears to be the orthomodular lattice and the
unit element of which is the equivalence class of theses of OMC.

In [Hardegree, 1981, p. 10] the valuation v is defined relative to E and in
the role of E the Lindenbaum-Tarski algebra for OMC appears but since E+

is also an orthomodular lattice then it is easy to reformulate the valuation v
for the case of E+.

In this case we can enrich the Q-valuation with the point
(3) v(α ⊃ β) = v(α) ⊃3 v(β)〉

and extend our theorem 10 to
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Theorem 3. If `OM,GOM,GO†M,OMC α then for any quantos Q we have Q |= α.

An open question is whether there are systems of quantum logic with diverse
conditionals corresponding ⊃1,⊃2,⊃4 or ⊃5.

4. Interpretation of Quantum Logic in quantos [E,QSets]

In order to build the category [E,QSets] as a quantos we consider the functor
Ω
−

: E→ QSet which will represent the classifying object in quantos [E,QSets].
Hereafter we will use E both as an algebra and the category. For any functor
F
¯

: E→ QSets we denote by F
¯ p

the value F
¯

(p) of functor F
¯

for object p from E.
For any q and p such that p ≤ q a functor F

¯
defines the function from F

¯ p
to F

¯ qwhich we denote F
¯ pq

. A functor F
¯

will be treated as the collection {F
¯ p

: p ∈ E}
of sets indexed by elements from an algebra E and endowed with the transition
mapping F

¯ pq
:F
¯ p
→F
¯ q

under p ≤ q (in particular, F
¯ pp

will an identity function
on F

¯ p
).

We continue in this fashion putting Ω
−p

= [p)+ and for p and q such that

p ≤ q the function Ω
−pq

: Ω
−p
→ Ω
− q

maps every S ∈ [p)+ into S ∩ [q) ∈ [q)+, i.e.

Ω
−pq

(S) = Sq.

A constant functor 1
¯
: E→ QSets which is a terminal object of the category

[E,QSets] might be defined with a help of conditions 1
¯p

= {0} for p ∈ E and
1
¯pq

= id{0} under p ≤ q. A subobject classifier true : 1
¯
→ Ω

−
is a natural

transformation whose p-th component truep : {0} → Ω
−p

will be determined

by the equality truep(0) = [p). Thus, the function true chooses the greatest
element from every orthomodular lattice of [p)+ type.

Let τ : F
¯
�
•
.

G
¯

be an arbitrary subobject of [E,QSets]-object G
¯
. An every

component τp is injective and can be treated as the inclusion function F
¯ p

↪→ G
¯ p.

The p-th component (χτ )p : G
¯ p → [p)+ of a characteristic arrow χτ : G

¯
�
•
.

Ω
−

will be defined by the equality
(χτ )p(x) = {q : p ≤ q and G

¯ pq(x) ∈ F
¯ q
}

for every x ∈ F
¯ p

.
Now we construct truth arrows in a quantos [E,QSets]. Let us start with

an arrow false.
An initial object 0

¯
: E → QSets of category [E,QSets] is the constant func-

tor such that 0
¯p

= ∅ and 0
¯pq

= id∅ for p ≤ q. Components of a natural
transformation 0

¯
�
•
1
¯
are the inclusions ∅ ↪→ {0} (the same component for any
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p). According to the usual definition an arrow false is the characteristic ar-
row of subobject ! : 0

¯
�
•
1
¯
. For its component falsep : {0} → Ω

−p
we have

falsep(0) = {q : p ≤ q and 1
¯pq

(0) ∈ 0
¯q
} = {q : p ≤ q and 0

¯
∈ ∅} = ∅ and hence

a natural transformation chooses the null element from every orthomodular
lattice.

Conjunction can be handled in same way as in case of topos [P, Sets] where
P is a Heyting algebra (cf. [Goldblatt, 1979]), i.e. we, in fact, need for ∩ :
Ω
−
× Ω
−
→ Ω
−

the definitions of their p-th components in a form of

∩p(〈S, T 〉) = S ∩ T.

The negation is ¬ : Ω
−
�
•
Ω
−

whose p-th component ¬p : Ω
−p
→ Ω
−p

in case

of indentifying falsep with the inclusion {∅} ↪→ Ω
−p

(and since ¬ : Ω
−
�
•
Ω
−

is a

characteristic arrow of subobject false) is as follows:
¬p(S) = {q : p ≤ q and Ω

−pq
(S) ∈ {∅}} = {q : p ≤ q and S ∩ [q) = {∅} =

[p) ∩ ¬S = (¬S)p.
The conditional is ⊃3: Ω−

×Ω
−
→ Ω
−

whose p-th component ⊃3p: Ω−p
×Ω
−p
→

Ω
−p

will be ∪p((¬S)p, (S ∩ T )p) according to the polinomiality of ⊃3.

Finally, we will call [E,QSets]-valuation a function V : Φ0 → [E,QSets](1,Ω
−

)

assigning to every propositional variable πi some truth-value V (πi) : 1 �
•

Ω
−
.

This function apparently might be extended to the set Φ of all formulas:

(a) V (¬α) = ¬ ◦ V (α);

(b) V (α ∧ β) = ∩ ◦ 〈V (α), V (β)〉;

(c) V (α ⊃ β) =⊃3 ◦〈V (α), V (β)

We say that the formula α be [E,QSets]-valid (we write [E,QSets] |= α) if
V (α) = true : 1

¯
→ Ω
−

for all [E,QSets]-valuations V .

Using valuation v : Φ0 → E from above it is easy to prove at the same way
the following theorem:

Theorem 4. For any quantos [E,QSets], [E,QSets] |= α iff
`OM,GOM,GO†M,OMC α (i.e. α is provable in OM,GOM,GO†M,OMC).
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