
Логические исследования Logical Investigations
2019. Т. 25. № 1. С. 100–119 2019, Vol. 25, No. 1, pp. 100–119
УДК DOI: 10.21146/2074-1472-2019-25-1-100-119

Giorgi Japaridze

Computability logic:
Giving Caesar what belongs to Caesar

Giorgi Japaridze
Villanova University and Institute of Philosophy Russian Academy of Sciences,
800 Lancaster Avenue, Villanova, PA 19085, USA .
E-mail: giorgi.japaridze@villanova.edu

Abstract: The present article is a brief informal survey of computability logic (CoL). This
relatively young and still evolving nonclassical logic can be characterized as a formal the-
ory of computability in the same sense as classical logic is a formal theory of truth. In a
broader sense, being conceived semantically rather than proof-theoretically, CoL is not just a
particular theory but an ambitious and challenging long-term project for redeveloping logic.

In CoL, logical operators stand for operations on computational problems, formulas represent
such problems, and their “truth” is seen as algorithmic solvability. In turn, computational
problems — understood in their most general, interactive sense — are defined as games played
by a machine against its environment, with “algorithmic solvability” meaning existence of a
machine which wins the game against any possible behavior of the environment. With this
semantics, CoL provides a systematic answer to the question “What can be computed?”, just
like classical logic is a systematic tool for telling what is true. Furthermore, as it happens,
in positive cases “What can be computed” always allows itself to be replaced by “How can be
computed”, which makes CoL a problem-solving tool.

CoL is a conservative extension of classical first order logic but is otherwise much more
expressive than the latter, opening a wide range of new application areas. It relates to
intuitionistic and linear logics in a similar fashion, which allows us to say that CoL reconciles
and unifies the three traditions of logical thought (and beyond) on the basis of its natural
and “universal” game semantics.

Keywords: Computability logic; game semantics; constructive logic; intuitionistic logic;
linear logic; interactive computability

For citation: Japaridze G. “Computability logic: Giving Caesar what belongs to Caesar”,
Logicheskie Issledovaniya / Logical Investigations, 2019, Vol. 25, No. 1, pp. 100–119. DOI:
10.21146/2074-1472-2019-25-1-100-119

The present article is essentially a transcript of a lecture I gave in Moscow at
the Institute of Philosophy on October 19, 2017. This explains some peculiarit-
ies of its style, such as speaking in first person or absence of formal definitions.

c© Japaridze G.

http://dx.doi.org/10.21146/2074-1472-2019-25-1-100-119
mailto:giorgi.japaridze@villanova.edu
http://dx.doi.org/10.21146/2074-1472-2019-25-1-100-119
http://dx.doi.org/10.21146/2074-1472-2019-25-1-100-119

Computability logic: Giving Caesar what belongs to Caesar 101

Thanks go to my good old friend Vladimir Shalack for organizing the lecture
and forcefully nudging me afterwards to write an article based on it.

1. Computability logic versus classical logic

Not to be confused with the generic term “computational logic”, “comput-
ability logic” (CoL) is the proper name of an approach and ongoing ambitious
project initiated by myself back in 2003 [Japaridze, 2003]. I characterize it as a
“formal theory of computability in the same sense as classical logic is a formal
theory of truth”. To see what this means, let us compare the two logics.

• In classical logic, the central semantical concept is truth; formulas rep-
resent statements; and the main utility of the logic is that it provides a
systematic answer to the questions “What is (always) true?” or “Does
truth of P (always) follow from truth of Q?”.1

• In computability logic, the central semantical concept is computability;
formulas represent computational problems; and the main utility of the
logic is that it provides a systematic answer to the questions “What is
(always) computable?” or “Does computability of P (always) follow from
computability of Q?”.

As we see, the second bulleted item is identical to the first one, only with “truth”
replaced by “computability” everywhere and, correspondingly, “statements” by
“computational problems” (for computability is the desired property of com-
putational problems just like truth is the desired property of statements). In
positive cases computability logic additionally provides a systematic answer to
not only questions in the style “what...”, but also “how...”, such as “How to
(always) compute P?”, or “How to (always) obtain an algorithm for P from an
algorithm for Q?”. With potential applications in mind, such questions are of
course more interesting than their “what” style counterparts.

Things are naturally set up so that statements of classical logic turn out to
be special cases of computational problems, and classical truth a special case
of computability. Eventually this makes classical logic a conservative fragment
of CoL: the language of CoL is a proper extension of that of classical logic, but
if we limit the former to the latter, CoL validates nothing more and nothing
less than what classical logic does.

2. Computability logic versus intuitionistic and linear logics

Similarly, intuitionistic and linear logics can also be viewed as fragments of
CoL, albeit “not quite” conservative ones, as CoL validates certain principles

1Of course, one is a special case of the other.

102 Giorgi Japaridze

not provable in those logics, even if there are more similarities than differences.
To me this fact indicates that those two logics are incomplete and do not fully
correspond to their underlying philosophies and intuitions.

Let me take the liberty to philosophize a little bit here. I believe the right
way to build a new logic is to:

(I) Start with the philosophy and intuitions that we want to capture — call
this informal semantics.

(II) Then elaborate a formal semantics that adequately corresponds to the
informal semantics.

(III) And only after that ask what should be provable and what not in a
proof system for the resulting logic, construct such a system and verify
its soundness and completeness.

This is the way classical logic evolved, culminating in Gödel’s completeness
theorem for first order logic. CoL, too, follows the same pattern. On the other
hand, I would say that intuitionistic and linear logics jumped from informal
semantics directly into proof systems, skipping the formal semantics phase.

Take Heyting’s intuitionistic logic for instance. Its construction started by
looking at proof systems for classical logic and removing the postulates that
appeared to be wrong from the informal intuitionistic point of view, such as
the law of excluded middle.

Similarly, linear logic was obtained from Gentzen’s sequent calculus for
classical logic as a result of deleting certain rules obviously incompatible with
the resource philosophy of linear logic, such as contraction.

Yes, in both cases the underlying philosophical and intuitive considerations
were sufficient to clearly see that the expelled principles were indeed wrong.
But where is the guarantee that, together with the law of excluded middle or
contraction, some innocent, deeply hidden principles did not vanish as well?
Idiomatically speaking, where is the guarantee that such a revision of classical
logic did not throw out the baby with the bathwater? And, indeed, I dare to
argue that this is exactly what happened. In the case of intuitionistic logic,
among such “babies” is

(¬P → A ∨B) ∧ (¬Q→ C ∨D) ∧ ¬(P ∧Q)→
(¬P → A) ∨ (¬P → B) ∨ (¬Q→ C) ∨ (¬Q→ D).

(1)

And an example of an innocent victim of rudely rewriting classical logic into
linear logic is

(A ∧B) ∨ (C ∧D)→ (A ∨ C) ∧ (B ∨D), (2)

Computability logic: Giving Caesar what belongs to Caesar 103

with its connectives understood in the multiplicative sense. I call the latter
Blass’s principle as Andreas Blass [Blass, 1992] was the first to study it as an
example of a game-semantically vaild principle underivable in linear logic.

Of course some, mostly retroactive, attempts have been made to create
formal semantics matching the proof systems of intuitionistic or linear logics.
But the reasonable way to go is to match a proof system with a convincing
formal semantics rather than vice versa. It is always possible to come up
with some formal semantics that matches the target proof system, but the
whole question is how adequately and convincingly that semantics captures the
philosophy and intuitions underlying the logic.

When constructing a deductive system, we ask what should be provable in it
and what not. An answer to this question stems from the underlying semantics
and only semantics, formal or informal: those things should be provable that
are semantically valid. Some popular approaches to intuitionistic logic have
attempted to explain everything in terms of proofs. For instance, you can see
the meaning of A∨B explained by saying that this formula should be considered
“good” (true? provable?) if either A or B can be proven. But the whole point
is that we are just trying to understand what should be provable and what not.
Trying to justify provability in terms of provability creates a vicious circle.

Why is taking a shortcut from the earlier described stage (I) directly to
stage (III) wrong? Because it is hardly possible to convincingly argue directly
that a given proof system corresponds to a given informal semantics. On the
other hand, adequacy (soundness and completeness) of a proof system with
respect to a formal semantics can be proven mathematically, as both, unlike
informal semantics, are mathematical objects. Now you can ask here: “OK,
but where is then the guarantee that the formal semantics adequately captures
the informal semantics and thus the original motivations and philosophy un-
derlying the logic?”. Of course, there is no guarantee, as this cannot be proven
mathematically. But it is easier to argue that the two match each other (when
they really do) because both are semantics. Comparing apples with apples is
easier than comparing them with oranges.

I have been pushing forward the above points since long ago. While having
heard the angry “How dare you!" many times from sympathizers of intuitionistic
or linear logics, I am still waiting to see some more convincing attempts to refute
them.

Summarizing much of what has been said in this section, my favorite excerpt
from [Japaridze, 2009], not without sarcasm, notes:

The reason for the failure of the principle of excluded middle in CoL
is not that this principle ... is not included in its axioms. Rather,
the failure of this principle is exactly the reason why it, or anything

104 Giorgi Japaridze

entailing it, would not be among the axioms of a sound system for
CoL.

3. Computational problems as games

Anyway, what is computability? Before trying to answer or even ask this
question, one should first understand what a computational problem is, for
computability is a property of computational problems. So, what is a compu-
tational problem? According to Church, a computational problem is nothing
but a function (to be computed). That is, the task of systematically generat-
ing the values of that function at different arguments. The tradition of seeing
computational problems as functions has since firmly established in theoret-
ical computer science. Such an approach, however, as acknowledged by Turing
[Turing, 1936] himself, is too narrow. Most tasks performed by computers are
interactive, far from being as simple as just receiving an input and generating
an output. For instance, take a look at the work of a network server. It is in
fact an infinite process, with signals moving back and forth between it and its
environment in a not quite synchronized or regulated fashion, affecting not only
current events but some future events as well. Such tasks are not always redu-
cible to functions, at least reducible in some “nice” way. We need something
more here, a more general concept to be able to adequately model complex
tasks performed by computers.

Such “something more” for us are games: a computational problem is a
game between a machine, denoted >, and its environment, denoted ⊥. Then
computability is understood as existence of a machine which always wins the
game, i.e., wins it no matter how the environment acts. In this presentation I
am not giving you any formal definitions, including definitions of our concepts
of games or game-playing. But such definitions, of course, do exist.

Even though often it is us who act in the role of ⊥, we are fans of >
rather than ⊥. That is because > (machine) is a tool, and its losing the game
would mean failing to perform the task it was supposed to perform for us. The
behavior (game-playing strategy) of >, as the word “machine” suggests, should
be algorithmic as it is a mechanical device. On the other hand, there are no
restrictions on the behavior of ⊥, as the latter represents a capricious user, the
blind forces of nature or the devil himself (and you can’t ask the devil to only
follow algorithmic strategies).

Games can be visualized as trees in the style of Figure 1. Vertices of such
a tree represent positions in the game, and edges — their labels, that is —
represent legal moves, prefixed with > or ⊥ to indicates which player can make
the move. On the other hand, the label > or ⊥ of a vertex indicates which
player is considered to be the winner if the game ends in the corresponding

Computability logic: Giving Caesar what belongs to Caesar 105

position. The game can end anywhere, it does not have to continue to the
“end”: after all, some branches can be infinite and thus there will be nothing
that could be understood as the “end”. So, if the machine made the move α
in the game of Figure 1, the environment responded with γ and no further
moves were made, the machine loses as the corresponding vertex of the tree is
⊥-labeled.

���
⊥
�����������

>α ⊥β

PPPPPPPPPPP

⊥γ

���
>
�

�
�

�
��

⊥β

Q
Q
Q
Q
QQ

⊥γ

���
>

>α

���
⊥
�

�
�
�

��

>α >β

Q
Q
Q
Q
QQ

>γ

���
> ���

⊥
�
�
��

>β
B
B
BB
>γ

���
> ���

⊥
�
�
��

>β >γ
B
B
BB

���
>

>α

���
⊥

>α

���
> ���

⊥ ���
> ���

⊥ ���
> ���

⊥

Figure 1: A game of depth 3

Games in logic have been studied by many authors, but our understanding
of games is apparently unique in that it does not impose any regulations on the
order in which the players should or could move, and permits positions where
both players have legal moves. For instance, the root position of the game of
Figure 1, as we see, allows either player to move. In that position, a move (if
any) will be made by the player which can or want to act faster.

It turns out that, in the sort of games we consider, the relative speed of
either player does not matter. Namely, it never hurts a player to postpone
making moves and let the adversary go first whenever possible. Such games
are said to be static, and they are defined by imposing a certain technical yet
simple condition on games. Striving to keep this presentation non-technical,
I will not discuss that condition here. Suffice it to say that all “pure” (speed-
independent) interactive problems turn out to be static, and the class of static
games is closed under all game operations studied in CoL. The game of Figure 1
is static, in which the machine has a winning strategy. An interactive algorithm
that guarantees the machine a win reads as follows:

106 Giorgi Japaridze

Regardless of what the adversary is doing or has done, go ahead and
make move α; make β as your second (and last) move if and when
you see that the adversary has made move γ, no matter whether this
happened before or after your first move.

It is left as an exercise for the reader to see that >, following this interactive
algorithm (strategy), wins no matter what and how fast ⊥ does.

Computational problems in the traditional sense, i.e. functions, are static
games of depth 2 of the kind seen in Figure 2.

���
Input

>
�����������

⊥0 ⊥1

PPPPPPPPPPP
⊥2

hhhhhhhhhhhh...

Output

���
⊥

>0

�
�
��

>1

�
�

��
>2

B
B
BB
>3

@
@
@@

...
Q
Q
QQ

���
⊥ ���

> ���
⊥ ���

⊥

���
⊥

>0

�
�
��

>1

�
�

��
>2

B
B
BB
>3

@
@
@@

...
Q
Q
QQ

���
⊥ ���

⊥ ���
> ���

⊥

���
⊥

>0

�
�
��

>1

�
�

��
>2

B
B
BB
>3

@
@
@@

...
Q
Q
QQ

���
⊥ ���

⊥ ���
⊥ ���

>

Figure 2: The successor function as a game

In such a game, the upper level edges represent possible inputs provided by
the environment, so they are ⊥-labeled. The lower level edges represent possible
outputs generated by the machine, so they are >-labeled. The root is >-labeled
because it corresponds to the situation where nothing happened, namely, no
input was provided by the environment. The machine has nothing to answer
for in this case, so it wins. The middle level nodes are ⊥-labeled because they
correspond to situations where there was an input but the machine failed to
generate an output, so the machine loses. Each group of the bottom level nodes
has exactly one >-labeled node, because a function has exactly one (correct)
value at each argument. It is not hard to see that the particular game of
Figure 2 represents the successor function x+ 1: if the input is 0, the machine,
in order to win, should generate the output 1, if the input is 1, the output
should be 2, etc.

Now CoL rhetorically asks why limit ourselves only to trees of the kind seen
in Figure 2. First of all, we may want to allow branches to be longer than 2, or
even infinite to be able to model long or infinite tasks performed by computing
machines. And why not allow all sorts of distributions of > and ⊥ in nodes or on
edges? For instance, consider the task of computing the function 3/x. It would

Computability logic: Giving Caesar what belongs to Caesar 107

be natural to make the node to which the input 0 takes us not ⊥-labeled, but
>-labeled. Because the function is not defined at 0, so the machine cannot be
held responsible for failing to generate an output on such an input.

It makes sense to generalize computational problems not only in the dir-
ection of increasing their depths, but also decreasing. Games of depth 0 are
said to be elementary. These are games with no legal moves (the game “tree”
is just its root), and thus games where one of the players automatically wins
by doing nothing. We understand true atomic sentences of classical logic such
as 2× 2 = 4 or > as the elementary game automatically won by the machine,
and false sentences such as 2 × 2 = 5 or ⊥ as the elementary game lost by
the machine. Note the two different yet related meanings of the symbols >
and ⊥ in CoL: depending on the context, such a symbol stands either for the
corresponding elementary game, or the player which wins that game.

Thus, classical propositions for us are nothing but elementary games. This
generalizes to predicates in the standard way. In classical logic, predicates can
be thought of as “propositions that (may) depend on variables”. Similarly, we
allow “games that (may) depend on variables”, with predicates being nothing
but elementary sorts of such games. As a result, classical logic becomes a
special case of CoL — CoL where only elementary games are allowed.

4. Choice operators

Logical operators in CoL stand for operations on games. There is a whole
zoo of them, with (at least) four sorts of conjunction and disjunction as well as
universal and existential quantifiers, a bunch of so called recurrence (repetition)
operations and corresponding implication-style and negation-style operations,
and more. In this short presentation we shall only look at the following subset
of the logical operators studied in CoL:

[¬,∧,∨,→,∀,∃,u,t,u,t, ◦| , ◦| , ◦– , ◦¬ .]

Using the classical notation for the first six of these is no accident. They
are conservative generalizations of their classical counterparts from elementary
games to all games. Conservative in the sense that, when applied to elementary
games (propositions, predicates) only, their extensional meanings and logical
behavior turn out to be exactly classical. This is how classical logic naturally
becomes a special (elementary) fragment of CoL.

We start with the choice connectives u (conjunction) and u (disjunction).
The way they combine two games A and B to get the new game AuB or AtB
is depicted in Figure 3.

108 Giorgi Japaridze

A uB

���
>
�

�
��

⊥0
@
@
@@

⊥1

A B

A tB

���
⊥
�
�

��

>0
@
@
@@

>1

A B

Figure 3: Choice conjunction and disjunction

As we see, A u B is the game where the first legal move is (only) by the
environment. Such a move should be either 0 or 1. If move 0 is made, the game
“turns into” A, in the sense that it continues — and the winner is determined —
according to the rules of A. Similarly for B in the case of move 1. Intuitively,
making move 0 or 1 means choosing between the left disjunct and the right
disjunct. Making such a choice is not only a privilege of the environment,
but also an obligation: as seen in the picture, the root of A u B is >-labeled,
meaning that the environment loses if it fails to make an initial move/choice.

A t B is fully symmetric/dual to A u B: in it, it is the machine rather
than the environment who makes the initial choice and who loses if no choice
is made.

For simplicity, let us agree that the universe of discourse is always
{0, 1, 2, · · · }. If so, the choice universal quantification uxA(x) (note that
u is larger than u) can be understood as the infinite choice conjunction
A(0) u A(1) u A(2) u · · · , and the choice existential quantification txA(x)
as the infinite disjunction A(0) t A(1) t A(2) t · · · . So, now a choice is made
not just between 0 or 1, but among 0, 1, 2, · · · , as shown in Figure 4.

uxA(x)

���
>
�

�
��
⊥0

@
@
@@

⊥2⊥1

Q
Q
Q. . .

A(0) A(1) A(2)

txA(x)

���
⊥
�
�

��
>0

@
@
@@

>2>1

Q
Q
Q. . .

A(0) A(1) A(2)

Figure 4: Choice quantifiers

Having these operators in the language, we may now conveniently express
standard computational problems (and beyond) without drawing trees. So, for

Computability logic: Giving Caesar what belongs to Caesar 109

instance, the problem of computing the successor function depicted in Figure 2
can be simply written as uxty(y = x + 1). In this game, the first move —
for instance 2 — is by the environment. Intuitively, this can be seen as asking
the machine the question “What is the successor of 2?”. The game continues as
ty(y = 2 + 1). The next move — say 3 — is by the machine, which amounts to
saying that 3 is the successor of 2. The game is now brought down (“continues
as”) 3 = 2 + 1. This is an elementary game with no further moves, and the
machine has won because 3 = 2 + 1 is true. Had the machine made the move
4 instead of 3, or no move at all, it would have lost.

Rather similarly, the problem of deciding a predicate p is expressed by
ux(¬p(x) t p(x)

)
.

5. Negation

Negation ¬ is an operation which flips the roles of the two players, turning
>’s wins and legal moves into ⊥’s wins and legal moves, and vice versa. For
instance, if Chess is the game of chess from the point of view of the white player,
then ¬Chess is the same game as seen by the black player. Figure 5 illustrates
how applying ¬ to a game A generates the exact “negative image” of A, with
> and ⊥ interchanged both in the nodes and on the arcs of the game tree.

A

���
>
�

�
��

⊥0
@
@
@@

⊥1

���
⊥

>0
�
�
��

B
B
BB
>1

���
> ���

⊥

���
⊥

>0
�
�
��

B
B
BB
>1

���
⊥ ���

>

¬A

���
⊥
�

�
��

>0
@
@
@@

>1

���
>

⊥0
�
�
��

B
B
BB
⊥1

���
⊥ ���

>

���
>

⊥0
�
�
��

B
B
BB
⊥1

���
> ���

⊥

Figure 5: Negation

Obviously if A is a true proposition, i.e., an elementary game automatically
won by the machine, then ¬A remains an elementary game but now lost by
the machine; in other words, ¬A is a false proposition. This is exactly what
was meant when promising that the meaning of ¬, or any other operator for
which we use classical notation, is exactly classical when limited to elementary
games.

110 Giorgi Japaridze

It can be easily seen that the games ¬¬A and A are identical: switching
the roles twice brings each player to its original status. Similarly, it can be
seen that ¬ interacts with choice operations in the kind old DeMorgan fashion.
E.g., ¬(AuB) = ¬At¬B. Looking back at Figure 5, notice that the game A
shown there is nothing but (> t ⊥) u (⊥ t >), and ¬A is its DeMorgan dual
(⊥ u>) t (> u⊥).

6. Parallel connectives

The operations ∧ and ∨ are called parallel conjunction and parallel disjunc-
tion. Unlike their choice counterparts A uB and A tB, in A ∧B or A ∨B no
choice between A and B is made by either player. Rather, the play proceeds in
parallel in both components. To win in A∧B, the machine should win in both
A and B, while for winning A ∨ B winning in just one of the two components
is sufficient.

Consider, for instance, Chess∧Chess. This is in fact a play on two boards,
where > plays white on both boards. Perhaps it plays against two adversaries:
Peter and Paul, though, for >, they together form just what it calls the (one)
environment. In order to win, > needs to defeat Peter on the left board and
Paul on the right board. The first move in this compound game is definitely
by >, as the opening move is by the white player on both boards. But, after
> makes its first move, say against Peter, the situation changes. Now both >
and its environment naturally have legal moves. Namely, > has a legal move
against Paul, while Peter (and thus the environment from >’s point of view)
also has a legal move in response to >’s initial move. It would be unnatural
here to impose some regulations regarding which player can go next. This is
why CoL’s understanding of games does not insist that in each position only
either > or ⊥ (but not both) should be allowed to move.

To appreciate the difference between the choice and the parallel sorts of
connectives, let us compare the two games ¬ChesstChess and ¬Chess∨Chess.
We assume that draw outcomes are ruled out in Chess, and the player who
fails to make a move on his turn is considered to have lost. Imagine I am
playing in the role of >, and the world champion Kasparov in the role of ⊥.
In ¬ChesstChess, I have a choice between playing on the left board (¬Chess)
or on the right board (Chess). That is, I get to decide whether I want to play
black or play white. After such a choice is made, I have to defeat Kasparov
on the chosen board, while the other board is discarded. Obviously I stand no
chance to win, regardless of whether I choose to play black or white. On the
other hand, I can easily beat Kasparov in ¬Chess ∨ Chess. This is a parallel
play on two boards. At the beginning, both Kasparov and I have legal moves:
Kasparov on the left board where he is playing white, and I on the right board.

Computability logic: Giving Caesar what belongs to Caesar 111

Rather than hurrying to make an opening move, I wait to let Kasparov move
first. If he, too, chooses to do nothing, then I win due to being the winner
on the left board. Now suppose Kasparov makes his opening move on the left
board. Can you guess how I should respond? Yes, by making the exact same
move on the right board. I wait again. Whatever move Kasparov makes on
the right board in response, I copy that move back on the left board. And so
on. By using this copy-cat strategy, I am in fact letting Kasparov play against
himself. Eventually, both he and I are guaranteed to win on one board and lose
on the other. Since this is a disjunction, having won in one of the disjuncts
makes me the winner in the overall game.

In general, the law of excluded middle “¬A OR A” is invalid in CoL with
OR understood as t but valid when OR is understood as ∨: one can prove
that, while the above seen copy-cat strategy wins all games of the form ¬A∨A,
for some A no machine can win ¬A tA against a sufficiently smart adversary.

7. Putting things where they belong

What is meant by “Giving Caesar what belongs to Caesar” (... and God
what belongs to God) in the title of this article? The twentieth century
has witnessed endless and fruitless fights between the classically-minded and
the constructivistically-minded regarding whether the law of excluded middle
should be accepted or rejected. It is obvious that the two schools of thought
were talking about two very different meanings of disjunction. Yet, for some
strange reason, they chose the same symbol ∨ for both, and then started ar-
guing with each other. Not quite serious I would say. CoL neutralizes this and
similar controversies by putting things where they belong. And, as pointed out
in Section 2., it does so semantically, not because it allows or forbids them
among the postulates of some purportedly “right” deductive system.

Give the classically minded what belongs to the classically-minded (∨), and
the constructivists what belongs to the constructivists (t)!

• Yes, classical logic is right: ¬A ∨A is indeed valid.

• Yes, intuitionistic logic is right: ¬A tA is indeed invalid.

No subject for arguing!
The classical tautology (¬A ∧ ¬A) ∨ A fails in CoL unless A is stipulated

to be elementary. Observe that, at least, the copy-cat trick used earlier in our
winning strategy for ¬Chess∨Chess no longer works for the “similar” (¬Chess∧
¬Chess) ∨ Chess. I can try to copy Kasparov’s moves in Chess within both
conjuncts of ¬Chess ∧ ¬Chess and vice versa. However, Kasparov may start
acting in different ways in these two conjuncts, and then, at best, I will be able

112 Giorgi Japaridze

to synchronize only one of them with Chess. It is then possible that eventually
I lose in Chess and in the unsynchronized conjunct of ¬Chess ∧ ¬Chess, which
makes me lose in the overall game (¬Chess∧¬Chess)∨Chess. Anyway, classical
logic accepts the principle (¬A ∧ ¬A) ∨A and linear logic rejects it (with ∧,∨
seen as multiplicatives). Which one is “right”?

The formal language of pure CoL has two sorts of nonlogical atoms: ele-
mentary and general. Elementary atoms are meant to be interpreted as ele-
mentary games, and general atoms as any games, elementary or not. We use
the lowercase p, q, · · · for elementary atoms and the uppercase P,Q, · · · for
general atoms.

And, again, Caesar is being given what belongs to Caesar and God what
belongs to God. The semantics of CoL classifies:

• (¬p ∧ ¬p) ∨ p as valid. Yes, classical logic is right!

• (¬P ∧ ¬P) ∨ P as invalid. Yes, linear logic is right!

(As for the earlier discussed law of excluded middle, both ¬P ∨ P and ¬p ∨ p
are valid and both ¬P t P and ¬p t p are invalid.)

From CoL’s perspective, classical logic differs from intuitionistic logic in its
understanding of logical constants (operators), and differs from linear logic in
its understanding of logical variables (nonlogical atoms).

8. Reduction

The implication operation → is defined in the standard way by

A→ B =def ¬A ∨B.

The intuition associated with this operation is that of a reduction of the con-
sequent to the antecedent. Since A is negated here and thus the roles of the two
players are interchanged in it, A can be seen by > as an environment-provided
resource rather than a task. Namely, > can observe how the environment is
playing in A and use that information in its play in B. The task of > is to win
B as long as the environment wins A; in other words, to solve problem B as
long as the environment is (correctly) solving problem A.

To get a feel of → as a reduction operation, consider the game

uxty(y = Father(x)
)
∧uxty(y = Mother(x)

)
→ uxty(y = PaternalGrandmother(x)

)
,

where Father(x) is the function “x’s father”, and similarly for Mother(x) and
PaternalGrandmother(x). Here, the task > is facing is telling the name of an

Computability logic: Giving Caesar what belongs to Caesar 113

arbitrary person’s paternal grandmother while the environment (correctly) tells
the name of an arbitrary person’s father and the name of an arbitrary person’s
mother. In other words, this is the problem of reducing the paternal grand-
motherhood problem to the fatherhood and motherhood problems. Winning
this game is easy and does not require any knowledge of anyone’s relative’s
names. Here is a strategy for >: Wait till ⊥ makes a move a in the con-
sequent (if not, > wins automatically). Intuitively, such a move amounts to
asking > the question “Who is a’s paternal grandmother?”. Make the same
move a in the first conjunct of the antecedent, i.e., ask the counterquestion
“Who is a’s father?”. ⊥ will have to answer correctly, or else it loses. Let us
say ⊥’s answer/move is b. Make the same move b in the second conjunct of
the antecedent, thus asking ⊥ to tell who b’s mother is. ⊥, again, will have
to provide the correct answer, let us say c. Now, by making the same move
c in the consequent, i.e., answering “c” to ⊥’s original question regarding a’s
paternal grandmother, > wins: c is indeed a’s paternal grandmother (unless
the environment lied in the antecedent about a’s father or b’s mother, but in
that case, as already noted, > is no longer responsible for anything).

9. Blind quantifiers

The operations ∀ and ∃, called blind quantifiers, conservatively generalize
their classical counterparts, just like ¬,∧,∨,→ do. Unlike the choice quanti-
fiers, there are no moves associated with ∀ or its dual ∃. Playing ∀xA(x) or
∃xA(x) means playing A(x) “blindly”, without knowing the value of x as the
latter is not specified by either player. In order to win ∀xA(x) (resp. ∃xA(x)),
> needs to play A(x) in such a way that it wins for all (resp. at least one)
possible values of x.

An alternative intuitive characterization of ∀xA(x) and ∃xA(x) would be
that, in these games, a third party chooses a value for x but never shows it
to either player. In order to win ∀xA(x) (resp. ∃xA(x)), > (resp. ⊥) needs
to play A(x) in a way that guarantees success regardless of what that chosen
value might have been.

Let us compare the games

ux(Even(x) tOdd(x)
)

and ∀x
(
Even(x) tOdd(x)

)
.

ux(Even(x) t Odd(x)
)
, which is a game of depth 2, is easy to win: wait till

the adversary selects a value m for x; if m is even, respond by choosing the
left disjunct of Even(m) t Odd(m), otherwise respond by choosing the right
disjunct, and rest your case. On the other hand, ∀x

(
Even(x) t Odd(x)

)
is a

game of depth 1, and it is impossible to win. Here the value of x is not specified
by the adversary or whoever for that matter, yet you should do the impossible

114 Giorgi Japaridze

task of choosing between Even(x) and Odd(x) so that all of the elementary
games/propositions Even(0),Even(1),Even(2), · · · (if you chose Even(x)) or
Odd(0),Odd(1),Odd(2), · · · (if you chose Odd(x)) are won/true.

This should not suggest than all ∀-games are unwinnable. Consider

∀x
(
Even(x) tOdd(x)→ uy(Even(x+ y) tOdd(x+ y)

))
.

Here, given a number chosen by the environment for y, let us say 5, in order to
tell whether x + 5 is even or odd it is not necessary to know the actual value
of x. Rather, just knowing whether x is even or odd is sufficient. And, luckily,
this piece of information on x will have to be provided by the environment as
mandated by Even(x) t Odd(x) in the antecedent. If the environment claims
that x is even, then > chooses Odd(x + 5) and wins; otherwise, it chooses
Even(x+ 5).
∀ can be seen to be stronger than u, in the sense that the semantics of CoL

validates the principle ∀xA(x) → uxA(x) but not its contrapositive. This
means that uxA(x) is reducible to ∀xA(x) but not vice versa. Symmetrically,
∃ is weaker than t.

Speaking philosophically, choice quantifiers are constructive versions of their
blind counterparts. While not as popular as the law of excluded middle,
∃x∀y

(
p(x) ∨ ¬p(y)

)
is another example of a valid principle of classical logic

which, however, is not valid in any constructive sense, and not provable in
intuitionistic logic. Again giving Caesar what belongs to Caesar, CoL unsur-
prisingly establishes:

• Both ∃x∀y
(
p(x)∨¬p(y)

)
and ∃x∀y

(
P (x)∨¬P (y)

)
are valid. Yes, classical

logic is right!

• Both txuy(p(x) ∨ ¬p(y)
)
and txuy(P (x) ∨ ¬P (y)

)
are invalid. Yes,

intuitionistic logic is right!

On the other hand, the valid principle ∀y∃x
(
p(x) ∨ ¬p(y)

)
of classical logic is

commonly recognized to be valid in every reasonable constructive sense, and is
provable in intuitionistic logic. As expected, CoL validates this principle with
both (blind and choice) sorts of quantifiers and both (elementary and general)
sorts of atoms.

10. Recurrences

Out of several types of so called recurrence operations studied within the
framework of CoL, here we shall only take a look at branching recurrence ◦| . Its
dual corecurrence operation ◦| can simply be understood as ¬◦|¬. When applied
to a game G, ◦| turns it into a game playing which means repeatedly playing G.

Computability logic: Giving Caesar what belongs to Caesar 115

When G is seen as a resource (e.g., when it is in the antecedent of an implica-
tion), ◦| generates multiple “copies” of G, thus making G a reusable/recyclable
resource.

In classical logic, this sort of an operation would be meaningless, because
classical logic is resource-blind, seeing no difference between one and many
copies of G. In the resource-conscious CoL, however, recurrence operations
are not only meaningful, but also necessary to achieve a satisfactory level of
expressiveness and realize CoL’s potential and ambitions. Hardly any computer
program is used only once; rather, it is run over and over again. Loops within
such programs also assume multiple repetitions of the same subroutine. In
general, the tasks performed in real life by computers, robots or humans are
typically recurring ones or involve recurring subtasks.

Let me use our old friend Chess to explain the meaning of ◦| . A play
of ◦|Chess starts as an ordinary play of Chess. At any time, however, the
environment may decide to split the current position into two identical ones,
thus creating two runs of Chess out of one that have a common past but possibly
diverging futures. From that point on, the play continues on two boards. At
any time, the environment can again create two identical copies of the then-
current position on either board, and the play correspondingly continues on
three boards. The environment can keep splitting positions in this fashion,
creating more and more sessions of Chess to be played in parallel. Eventually,
> will be considered the winner if it wins in all of those sessions. ◦|Chess is
similar, with the difference that now splitting positions is >’s privilege, and >
wins if it wins in at least one of the multiple sessions of Chess.

11. Brimplication

The implication-style operation ◦– , called brimplication (“br” for “branch-
ing”), is defined by

A ◦–B =def ◦|A→ B.

Intuitively A ◦–B, just like A→ B, is a problem of reducing B to A. The differ-
ence between the two reduction operations is that, while in A→ B the machine
has a single copy of A available as an environment-provided informational re-
source for solving B, in A ◦–B the resource A — as well as any game/position
it has evolved to — can be duplicated and reused any number of times. As a
result, A ◦–B is easier for > to win than A → B because, as a resource, the
antecedent of A ◦–B is stronger (very much so) than the antecedent of A→ B.
While being the most basic sort of reduction allowing us to naturally define
◦– or other reduction-style operations, → is a stricter and thus less general
operation of reduction than ◦– . In fact, according to Thesis 1 below, ◦– is
the most general sort of reduction.

116 Giorgi Japaridze

We say that a problem/game B is brimplicatively reducible to a problem A
iff there is a machine with a winning strategy for A ◦–B.

Thesis 1. Brimplicative reducibility is an adequate mathematical counterpart
of our intuition of reducibility in the weakest — and hence the most general —
algorithmic sense possible. Namely, for all games/problems A and B, we have:

(I): Whenever B is brimplicatively reducible A, B is also algorithmically redu-
cible to A according to everyone’s reasonable intuition.

(II): Whenever B is algorithmically reducible to A according to everyone’s reas-
onable intuition, B is also brimplicatively reducible to A.

This is pretty much in the same sense as, by Church’s celebrated thesis, a
function f is Turing-machine computable iff f is algorithmically computable
according to everyone’s reasonable intuition.

It should be also mentioned that, unsurprisingly, brimplicative reducibility
turns out to be a conservative generalization of Turing reducibility, commonly
accepted in theoretical computer science as the most general relation of redu-
cibility between the traditional, non-interactive sorts of problems.

12. On intuitionistic logic once again

According to Kolmogorov’s [Kolmogorov, 1932] well known thesis, intuition-
istic logic is a logic of problems. This thesis was stated by Kolmogorov in rather
abstract, philosophical terms. No past attempts to find a strict and adequate
mathematical explication of it have fully succeeded. The following theorem
tells a partial success story (“partial” because it is limited to only positive pro-
positional fragment of intuitionistic logic):

Theorem 1. [Japaridze [Japaridze, 2007b]; Mezhirov and Vereshchagin
[Mezhirov, Vereshchagin, 2010]] The positive (negation-free) propositional frag-
ment of Heyting’s intuitionistic calculus is sound and complete with respect to
the semantics of CoL, with intuitionistic implication understood as ◦– , con-
junction as u and disjunction as t.

As for the intuitionistic operators not mentioned in the above theorem, CoL
sees the intuitionistic universal quantifier as u, existential quantifier as t, and
negation as what it calls brefutation ◦¬ , defined by

◦¬A =def A ◦–⊥.2
2As we remember from Section 3., the meaning of the logical constant ⊥ in CoL is stand-

ard: this is an always-false proposition, i.e., the elementary game automatically lost by the
machine.

Computability logic: Giving Caesar what belongs to Caesar 117

So, formula (1) from Section 2. should in fact have been written as

(◦¬P ◦–A tB) u (◦¬Q ◦–C tD) u ◦¬ (P uQ) ◦–
(◦¬P ◦–A) t (◦¬P ◦–B) t (◦¬Q ◦–C) t (◦¬Q ◦–D).

(3)

This formula, as noted earlier, is valid in CoL but unprovable in Heyting’s
calculus, making the latter incomplete with respect to the semantics of CoL.
At the same time, Heyting’s calculus in its full first order language has been
shown [Japaridze, 2007a] to be sound with respect to CoL’s semantics. So,
intuitionistic logic — at least, Heyting’s formal version of it — is a fragment
of CoL but, unlike classical logic, “not quite” a conservative one. Nevertheless,
since (3) is the shortest formula known to separate Heyting’s calculus from the
corresponding fragment of CoL, one can say that Heyting’s calculus is quite
close to being complete.

13. Conclusion

Computability logic (CoL) is a formal theory of computability in the same
sense as classical logic is a formal theory of truth. Its formulas represent com-
putational problems, logical operators stand for operations on such problems,
and validity means being “always computable”. Computational problems, in
turn, are understood in their most general — interactive — sense and, mathem-
atically, are defined as games played by a machine against its environment.

This article was a brief, informal and incomplete survey of CoL. The latter
is not a subject that can be duly introduced within a 1-hour presentation and,
in order to well understand it, one will have to use additional sources. Out
of the numerous publications devoted to CoL, the most recommended reading
for a beginner are the first ten sections of [Japaridze, 2009]. An even more
comprehensive — and the most up-to-date — survey of CoL can be found online
in [Japaridze, 20019].

There was no discussion of related literature in this article. Such discussions
can be found elsewhere, including the already mentioned [Japaridze, 2009] or
[Japaridze, 20019]. I just want to point out here that the main precursors
of CoL are Lorenzen’s [Lorenzen, 1961] dialogue semantics for intuitionistic
logic, Hintikka’s [Hintikka, 1973] game-theoretic semantics for classical logic
and Blass’s [Blass, 1992] game semantics for linear logic, the latter being the
closest one.

The language of CoL is much more expressive than the fragment surveyed
in the present article. Important topics not covered here also include the proof
theory of CoL. And, of course, actual and potential applications of CoL out-
side logic itself. Such applications include theory of (interactive) computation,

118 Giorgi Japaridze

knowledgebase systems, systems for planning and action, declarative program-
ming languages, constructive applied theories, and more.

So far the most manifestly realized extra-logical utility of CoL has been
using it as a logical basis for applied theories [Japaridze, 20010]-[Japaridze,
20016c], with such theories offering substantial advantages over their classical-
logic-based counterparts. CoL-based number theory, termed clarithmetic, will
be the subject of a forthcoming paper expected to appear in the next issue of
this journal.

I want to close this article by pointing out that, despite having been evolving
for 15 years already, CoL, due to its ambitiousness, still remains at an early
stage of development, with more open questions than answered ones. A re-
searcher who decides to join the project will find enough interesting material to
be occupied with for many years to come. Students are especially encouraged
to try.

References
Blass, 1992 – Blass, A. “A game semantics for linear logic”, Annals of Pure and Applied

Logic, 1992, Vol. 56, pp. 183–220.
Hintikka, 1973 – Hintikka, J. Logic, Language-Games and Information: Kantian

Themes in the Philosophy of Logic. Clarendon Press, 1973.
Japaridze, 2003 – Japaridze, G. “Introduction to computability logic”, Annals of Pure

and Applied Logic, 2003, Vol. 123, pp. 1–99.
Japaridze, 2007a – Japaridze, G. “Introduction to computability logic”, Acta Cyber-

netica, 2007, Vol. 18, No. 1, pp. 77–113.
Japaridze, 2007b – Japaridze, G. “The intuitionistic fragment of computability logic

at the propositional level”, Annals of Pure and Applied Logic, 2007, Vol. 143, No. 1,
pp. 187–227.

Japaridze, 2009 – Japaridze, G. “In the beginning was game semantics”, in: Games:
Unifying Logic, Language, and Philosophy, eds. by O. Majer, A.-V. Pietarinen and
T. Tulenheimo. Springer, 2009, pp. 249–350.

Japaridze, 20010 – Japaridze, G. “Towards applied theories based on computability
logic”, Journal of Symbolic Logic, 2010, Vol. 75, pp. 565–601.

Japaridze, 20011 – Japaridze, G. “Introduction to clarithmetic I”, nformation and
Computation, 2011, Vol. 209, pp. 1312–1354.

Japaridze, 20014 – Japaridze, G. “Introduction to clarithmetic III”, Annals of Pure
and Applied Logic, 2014, Vol. 165, pp. 241–252.

Japaridze, 20016a – Japaridze, G. “Introduction to clarithmetic II”, Information and
Computation, 2016, Vol. 247, pp. 290–312.

Japaridze, 20016b – Japaridze, G. “Build your own clarithmetic I: Setup and com-
pleteness”, Logical Methods in Computer Science, 2016, Vol. 12, Issue 3, Paper 8,
pp. 1–59.

Computability logic: Giving Caesar what belongs to Caesar 119

Japaridze, 20016c – Japaridze, G. “Build your own clarithmetic II: Soundness”, Logical
Methods in Computer Science, 2016, Vol. 12, Issue 3, Paper 12, pp. 1–62.

Japaridze, 20019 – Japaridze, G. “Computability Logic Homepage”, An Online Survey
of Computability Logic. 2019. [www.csc.villanova.edu/\simjaparidz/CL/,
accessed on 21.02.2019]

Kolmogorov, 1932 – Kolmogorov, A. N. “Zur Deutung der intuitionistischen Logik”,
Mathematische Zeitschrift, 1932, Vol. 35, pp. 58–65.

Lorenzen, 1961 – Lorenzen, P. “Ein dialogisches Konstruktivitätskriterium”, in: Infin-
itistic Methods. PWN, Proc. Symp. Foundations of Mathematics., Warsaw, 1961,
pp. 193–200.

Mezhirov, Vereshchagin, 2010 – Mezhirov, I., Vereshchagin, N. “On abstract resource
semantics and computability logic”, Journal of Computer and Systems Sciences,
2010, Vol. 76, pp. 356–372.

Turing, 1936 – Turing, A. “On Computable numbers with an application to the
entsheidungsproblem”, Proceedings of the London Mathematical Society, 1936,
Vol. 2:42, pp. 230–265.

www.csc.villanova.edu/$\sim $japaridz/CL/

