Логика термов

В.И. Шалак

ABSTRACT. In the paper we construct logic of signs as more basic in contrast to traditional approach of logic of sentences.

«...если логик даже одного класса континуум, а людей (разумных существ) всего конечное число и пусть каждый рассуждает по-своему, то что же тогда представляет собой Логика как таковая?» Карпенко А.С.

"Логика на рубеже тысячелетия".

1 Введение

«Логика — это нормативная наука о формах и приемах интеллектуальной познавательной деятельности, осуществляемой с помощью языка». Хорошее определение, но требует дальнейших уточнений. В первую очередь это касается языка как «...знаковой системы, предназначенной для фиксации, хранения, переработки и передачи информации». В свою очередь необходимо добавить, что «всякий язык состоит из знаков. Знаком называется материальный объект, который для некоторого интерпретатора (субъекта) выступает в качестве представителя какого-то другого предмета. [...] Важнейшими характеристиками знаков являются смыслы и значения» [1].

Казалось бы, теперь мы должны перейти к определению основных форм, в которых фиксируются результаты интеллектуальной познавательной деятельности. Но, говоря о формах, мы неизбежно будем ссылаться на наш предшествующий опыт, который по очевидным причинам ограничен. В связи с тем, что логика является нормативной наукой, нас подстерегает опасность привнести в нее совершенно неоправданные ограничения на те формы, в которые будут облекаться результаты нашей деятель-

ности. То, что это не выдуманные страхи, легко проиллюстрировать на примере традиционной логики.

Как известно, ее предложения имеют субъектно-предикатную структуру. Такой язык требует описывать мир в терминах вещей и их свойств. В философии это привело к появлению понятия субстанции, в физике — к понятию абсолютного пространства. В языке традиционной логики не выразимо ни одно отношение, даже такое простое, как отношение больше. С этой проблемой сталкивается Сократ в диалогах Платона «Федон» и «Теэтет». Требование к ученым облекать свои новые теории в формы, предписываемые традиционной логикой, объективно тормозило развитие науки. Современная логика, в отличие от традиционной, — это общая теория отношений. Чтобы убедиться в этом, достаточно посмотреть на ее язык и определение модели. Теперь логика предписывает формулировать научные теории в терминах объектов и отношений между ними. Но и это не решает всех проблем. Например, если мы хотим говорить о движении объекта, то вынуждены сводить его к последовательности статичных состояний, которые внутренне никак между собой не связаны. Точно так же статично и время, когда мы пытаемся говорить о нем в терминах отношения порядка на моментах времени.

Логика не должна навязывать ничего, что выходит за рамки ее компетенции.

Обратимся к языку как знаковой системе. Вместо того чтобы оперировать смыслами и значениями, мы можем оперировать самими знаками. Так, например, список сотрудников Института философии в определенных ситуациях может замещать самих сотрудников. Другой пример. Если известно, сколько яблок в одном мешке и сколько яблок в другом мешке, мы можем вычислить, сколько всего яблок в двух мешках. Для этого нам не нужно высыпать их в одну кучу и заново пересчитывать, а достаточно воспользоваться арифметической операцией сложения. В процессе оперирования знаками мы переходим от одних выражений языка к другим. Это и есть рассуждение в самом общем виде. При этом мы не имеем права ограничиваться рассмотрением выражений лишь какой-то одной семантической категории в ущерб другим. В рассуждении мы выделяем исходные выражения (посылки) и конечный результат (заключение). Хорошими, или правильными, являются те рассуждения, которые позволяют на основании значений (смыслов) посылок определить значение (смысл) заключения. В этом суть рассуждения как познавательной операции. Задача логики заключается в анализе и классификации хороших способов рассуждений.

При таком понимании логики никакая предустановленная онтология не навязывается, а существует исключительно виртуально всего лишь как возможность соотнести знаки языка с чем-то ему внеположным. В зависимости от конкретных познавательных задач онтология может наполняться конкретным содержанием. Задача логики — дать возможность правильно рассуждать о ней независимо от будущего наполнения.

2 Определение следования

Перейдем к более строгому обоснованию и построению логики, которую назовем логикой термов. В первом приближении определение семантического отношения следования для нее выглядит следующим образом:

Из посылок Σ следует заключение A, если и только если на основании значений посылок Σ мы можем определить значение заключения A.

Значение заключения A мы определяем не путем его непосредственного соотнесения с внеязыковой реальностью, а на основании определенной связи со значениями посылок Σ . Эта связь должна быть осознана и представлена в виде некоторого правила \mathbf{f} . Любой, кому известно это правило, может повторить рассуждение и убедиться в его корректности.

Из посылок Σ следует заключение A, если и только если существует такое правило f, которое позволяет на основании значений посылок Σ определить значение заключения A.

Поскольку правило f применяется не к самим знакам, а к тому, что им сопоставлено, введем для этого специальные обозначения. Пусть Val будет множеством функций, осуществляющих возможные сопоставления выражениям языка их значений или

смыслов. Будем считать, что правило **f** осуществляет функциональную связь, т.е. результат его применения определен однозначно. Ограничение функциональными связями не является существенным, но принято в данной работе лишь для определенности.

Из посылок $B_1, \ldots, B_n (n \ge 0)$ следует заключение A, если и только если существует такая функция f, которая позволяет для всякого соответствия $v \in V$ al на основании $v(B_1), \ldots, v(B_n)$ определить v(A), m. e. $v(A) = f(v(B_1), \ldots, v(B_n))$.

С использованием привычной логической символики последнее определение можно записать еще более кратко.

$$\{B_1,\ldots,B_n\} \parallel = A \iff \exists f \forall v \in Val(v(A) = f(v(B_1),\ldots,v(B_n))),$$

где $\{B_1,\ldots,B_n\}\parallel=A$ служит обозначением для отношения следования.

Данное определение не налагает никаких ограничений на типы фигурирующих в нем языковых выражений. Они не сводятся к одним лишь предложениям языка, как это принято в привычной нам логике. Если познавательный смысл рассуждений заключается в том, чтобы заменить оперирование с реальными объектами оперированием со знаками, то у нас нет никаких оснований ограничивать свои познавательные возможности. Рост нашего знания напрямую связан с накоплением функций f, позволяющих осуществлять оперирование реальными объектами на знаковом уровне.

Приведем несколько конкретных примеров отношения следования, удовлетворяющих нашему определению. Пусть t и s — два числовых терма. Тогда имеет место следование $\{t,s\} \parallel = t+s$, так как существует арифметическая функция сложения, позволяющая по любым двум числам вычислить их сумму. Благодаря существованию арифметической операции вычитания будет иметь место следование $\{t,t+s\} \parallel = s$. Нашему определению следования будет удовлетворять отношение $\{t,s\} \parallel = t=s$, где слева стоят два терма, а справа — предложение, так как для любых

двух чисел мы можем определить, равны они или не равны, и тем самым вычислить истинностное значение предложения t=s. Точно так же будет иметь место $\{t,s\} \parallel = t \neq s$, обоснование которого аналогично предыдущему. Последний пример — это следование $\{t=s\} \parallel = t \neq s$. Если мы знаем истинностное значение предложения t=s, то мы всегда можем вычислить истинностное значение предложения $t\neq s$.

С точки зрения классической логики, ни одно из этих отношений не является следованием. Поэтому интересно ответить на вопрос, как соотносится наше определение следования с хорошо знакомым классическим определением?

Из множесства посылок Σ следует предложение A, если и только если всякий раз, когда истинны все посылки Σ , будет истинно и предложение A.

Это определение вообще не может считаться определением следования. Дело в том, что если множество Σ противоречиво, то в классической логике для любой формулы A имеет место следование $\Sigma \parallel = A$. Но в этом случае не может существовать правила \mathbf{f} , которое позволяло бы определить значение A на основании значений предложений Σ . Точно так же мы ничего не можем сказать об A в модели, в которой хотя бы одна из посылок Σ ложна. Это заставляет усомниться в логической адекватности классического определения. Ведь если оно не позволяет заменить оперирование с реальными объектами оперированием с соответствующими языковыми выражениями, то в чем его смысл?

При кажущейся простоте наше определение является по своей сути интенсиональным. Поскольку всякая функция соответствия $v \in Val$ однозначным образом сопоставляет выражениям языка их значения, получаем, что каждое выражение A задает некоторую определенную на множестве Val функцию $\mathbf{A}(v) =_{def} v(A)$. Поэтому мы можем переписать определение следующим образом.

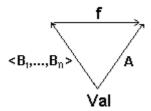
$$\{B_1,\ldots,B_n\} \parallel = A \iff \exists f \ \forall v \in Val(\mathbf{A}(v) = f(\mathbf{B_1}(v),\ldots,\mathbf{B_n}(v))).$$

Выражение $\forall v \in Val(\mathbf{A}(v) = \mathbf{f}(\mathbf{B_1}(v), \dots, \mathbf{B_n}(v))$ в правой части определения в свою очередь можно упростить, так как оно означает всего лишь равенство функций \mathbf{A} и $\mathbf{f}(\mathbf{B_1}, \dots, \mathbf{B_n})$.

$$\{B_1, \ldots, B_n\} \parallel = A \iff \exists f(\mathbf{A} = f \circ < \mathbf{B_1}, \ldots, \mathbf{B_n} >).$$

Это позволяет записать его на языке диаграмм.

Из множества формул B_1, \ldots, B_n следует формула A, если и только если существует такая функция f, что следующая диаграмма коммутативна:



Если множество Val рассматривать как множество возможных миров, то выражения языка интерпретируются не статичными объектами, а функциями, приписывающими им конкретные значения в каждом из этих миров. Эти функции можно понимать как законы, определяющие поведение объектов, которые сопоставлены языковым выражениям. Если Val — множество моментов времени, то, например, индивид понимается как функция, идентифицирующая его в каждый из моментов.

При таком определении следования появляется возможность включить в одну общую теорию дедукции такие формы выражения мысли, как вопросы, императивы, инструкции. Одного этого уже достаточно, чтобы обратить на него внимание.

3 Логика термов

Перейдем к формальному построению логики термов. Вышеприведенная диаграмма наводит на мысль, что адекватным математическим аппаратом для задания семантики может послужить теория категорий. Напомним определение.

ОПРЕДЕЛЕНИЕ 1. Категория C состоит из:

- Объектов $obj(C) = a, b, c, \dots$
- Стрелок $arr(C) = f, g, h, \dots$
- Каждой из стрелок f сопоставлены два объекта dom(f) и cod(f). Запись $f: a \to b$ означает, что dom(f) = a и cod(f) = b.
- Для любых двух стрелок $f: a \to b$ и $g: b \to c$ существует стрелка $g \circ f: a \to c$, называемая их композицией.
- Каждому объекту a сопоставлена стрелка $1_a : a \to a$, называемая единичной.
- Для любых трех стрелок $f: a \to b, g: b \to c$ и $h: c \to d$ имеет место закон ассоциативности $h \circ (g \circ f) = (h \circ g) \circ f$.
- Для любой стрелки $f: a \rightarrow b$ имеют место равенства $1_b \circ f = f \circ 1_a = f$.

Так как выражениям языка сопоставляются не статичные объекты, а функции, аналогом которых в теории категорий являются стрелки, нам понадобятся категории специального вида, называемые относительными.

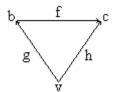
Пусть дана категория C. Определение относительной категории $C \uparrow v$ выглядит следующим образом.

ОПРЕДЕЛЕНИЕ 2. Относительная категория $C \uparrow v$:

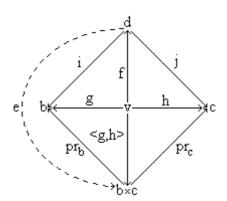
- $obj(C \uparrow v) = \{ f \in arr(C) | dom(f) = v \}$
- $arr(C \uparrow v) = \{ f \in arr(C) | \exists g \in obj(C \uparrow v) \exists h \in obj(C \uparrow v) (f \circ g = h) \}$

Объектами этой категории являются стрелки исходной категории C с началом в v, а стрелками в свою очередь являются такие стрелки категории C, которые делают приведенную выше диаграмму коммутативной, т.е. выполняется равенство $f \circ q = h$.

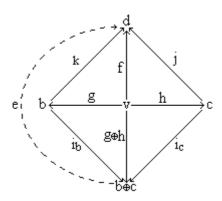
Чтобы определить все интересующие нас логические конструкции, в категории $C \uparrow v$ должны существовать произведения и копроизведения ее объектов.



ОПРЕДЕЛЕНИЕ 3. В относительной категории $C \uparrow v$ объект $< g, h >: v \to b \times c$ вместе с двумя называемыми проекциями стрелками $pr_b :< g, h > \to g$ и $pr_c :< g, h > \to h$ называется произведением объектов $g : v \to b$ и $h : v \to c$, если и только если для любого другого объекта $f : v \to d$ и любых двух стрелок $i : f \to g$ и $j : f \to h$ существует единственная стрелка $e : f \to < g, h >$, такая, что $pr_b \circ e = i$ и $pr_c \circ e = j$.



ОПРЕДЕЛЕНИЕ 4. В относительной категории $C\uparrow v$ объект $g\oplus h:v\to b\oplus c$ вместе с двумя называемыми инъекциями стрелками $i_b:g\to g\oplus h$ и $i_c:h\to g\oplus h$ называется копроизведением объектов $g:v\to b$ и $h:v\to c$, если и только если для любого другого объекта $f:v\to d$ и любых двух стрелок $k:g\to f$ и $j:h\to f$ существует единственная стрелка $e:g\oplus h\to f$, такая, что $e\circ i_b=k$ и $e\circ i_c=j$.



Поскольку в определении следования могут участвовать любые языковые выражения, нам понадобится многосортный язык.

ОПРЕДЕЛЕНИЕ 5. Язык $L_T = < Sort, Var_{Sort}, Fun, Op >$

- Sort множество сортов A, B, C, \ldots ;
- Var_{Sort} семейство счетных множеств индивидных переменных $Var_A=\{x_i|i<\omega\}$ для каждого $A\!\in\!Sort;$
- Fun множество функциональных символов f, g, h, \ldots , каждому из которых сопоставлен его тип $f: A_1 \times \cdots \times A_n \to B$:
- $Op = \{\land, \lor\}$ операции $Sort \times Sort \rightarrow Sort$.

Все выражения нашего языка являются термами. Выделять в отдельный класс предложения нет никакой необходимости, так как они не играют никакой особой роли и используются наравне с другими выражениями. Именно по этой причине мы и не стали вводить отдельный сорт истинностных значений. Его всегда можно ввести, если в этом возникнет необходимость, в общем же случае он не нужен. Необходимы лишь некоторые комментарии, относящиеся к использованию функциональных символов

при определении сложных термов и к использованию логических связок \wedge и \vee . Если для функциональных символов заранее фиксированы типы аргументов и тип значения, то связки являются термообразующими операторами. Это означает, что они применимы к термам любых типов и в результате порождают терм нового сложного типа.

ОПРЕДЕЛЕНИЕ 6. Термы

- Если x индивидная переменная сорта A, то x : A терм сорта A
- Если $f: A_1 \times \ldots \times A_n \to B$ функциональный символ и $t_1: A_1, \ldots, t_n: A_n$ термы, то $f(t_1, \ldots, t_n): B$ терм сорта B;
- Если $t_1:A_1,t_2:A_2$ термы, то $(t_1 \wedge t_2):A_1 \times A_2$ терм сорта $A_1 \times A_2$, $(t_1 \vee t_2):A_1 \oplus A_2$ терм сорта $A_1 \oplus A_2$.
- Ничто другое термом не является.

Определение интерпретации комментариев не требует.

ОПРЕДЕЛЕНИЕ 7. Категорная интерпретация языка L_T есть пара $I = \langle C \uparrow v, [.] \rangle$

- $C \uparrow v$ относительная категория с конечными произведениями и копроизведениями объектов;
- [.] отображение $Sort \to obj(C)$, сопоставляющее каждому сорту A языка некоторый объект [A] категории C;
- [.] отображение $Var_{Sort} \to obj(C \uparrow v)$, сопоставляющее каждой переменной x:A некоторый объект $[x]:v \to [A]$ категории $C \uparrow v$;
- [.] отображение $Fun \to arr(C \uparrow v)$, сопоставляющее каждому функциональному символу $f: A_1 \times \cdots \times A_n \to B$ стрелку $[f]: [A_1] \times \cdots \times [A_n] \to [B]$ категории C.

ОПРЕДЕЛЕНИЕ 8. Значение терма t при категорной интерпретации $I=<\!C\!\uparrow\!v,[.]\!>$

- $\bullet \ t = x : A [t] = [x] : v \rightarrow [A]$
- $t = f(t_1, ..., t_n) : B [t] = [f] \circ \langle [t_1], ..., [t_n] \rangle : v \to [A_1] \times ... \times [A_n] \to [B]$
- $t = (t_1 \land t_2) : A_1 \times A_2 [t] = \langle [t_1], [t_2] \rangle : v \to [A_1] \times [A_2]$
- $t = (t_1 \lor t_2) : A_1 \oplus A_2 [t] = [t_1] \oplus [t_2] : v \to [A_1] \oplus [A_2]$

ОПРЕДЕЛЕНИЕ 9. Терм t:A следует из конечной последовательности термов $t_1:A_1,\ldots,t_n:A_n$ при категорной интерпретации $I=<C\uparrow v,[.]>$, если и только если существует такая стрелка h категории $C\uparrow v$, что $[t]=h\circ<[t_1],\ldots,[t_n]>$.

$$t_1: A_1, \ldots, t_n: A_n \parallel =_I t: A \iff \exists h \in arr(C \uparrow v)([t] = h \circ \langle [t_1], \ldots, [t_n] \rangle)$$

Следующее определение является категорным определением отношения логического следования в логике термов.

ОПРЕДЕЛЕНИЕ 10. Терм t: A следует из конечной последовательности термов $t_1: A_1, \ldots, t_n: A_n$, если и только если он следует при всякой категорной интерпретации $I = \langle C \uparrow v, [.] \rangle$.

$$t_1: A_1, \ldots, t_n: A_n \parallel = t: A \iff \forall I(t_1: A_1, \ldots, t_n: A_n \parallel =_I t: A)$$

Основные свойства, которыми обладает наше определение следования, перечислены в следующей лемме.

ЛЕММА 11. Если Σ и Δ — последовательности термов (возможно пустые), то определенное нами отношение следования обладает следующими свойствами:

- a) $t : A \parallel = t : A$
- b) Σ , t : A || = t : A

c)
$$t_1: A_1, \ldots, t_n: A_n \parallel = t: A \Longrightarrow t_{i1}: A_{i1}, \ldots, t_{in}: A_{in} \parallel = t: A$$

d)
$$\Sigma \parallel = t : A \implies \Sigma, t_1 : A_1 \parallel = t : A$$

e)
$$\Sigma$$
, $t_1: A_1$, $t_1: A_1 \parallel = t: A \implies \Sigma$, $t_1: A_1 \parallel = t: A$

f)
$$\Sigma ||=t_1:A_1; \ \Delta,t_1:A_1||=t:A \implies \Delta, \ \Sigma ||=t:A$$

g)
$$\Sigma \parallel = t_1 : A_1; \ \Sigma \parallel = t_2 : A_2 \implies \Sigma \parallel = (t_1 \times t_2) : A_1 \times A_2$$

h)
$$\Sigma \parallel = (t_1 \times t_2) : A_1 \times A_2 \implies \Sigma \parallel = t_1 : A_1$$

i)
$$\Sigma$$
, $t_1: A_1, t_2: A_2 \parallel = t: A \implies \Sigma$, $(t_1 \times t_2): A_1 \times A_2 \parallel = t: A$

j)
$$t_1: A_1|| = t: A; t_2: A_2|| = t: A \Longrightarrow (t_1 \oplus t_2): A_1 \oplus A_2|| = t: A$$

k)
$$\Sigma \parallel = t_1 : A_1 \implies \Sigma \parallel = (t_1 \oplus t_2) : A_1 \oplus A_2$$

А как же импликация? Почему мы не включили ее в наш язык? Ответ прост. Можно показать, что при нашем определении следования не существует такой логической связки, для которой выполнялись бы modus ponens и теорема дедукции. В то же время это вовсе не означает, что ни для одной конкретной категории ее нельзя определить. Преимущество категорной интерпретации заключается в том, что она задает логическое ядро, которое сохраняется для каждой конкретной категории, но может приобретать и новые свойства. Например, в общем случае не выполняется закон дистрибутивности для дизъюнкции и конъюнкции, но это вовсе не означает, что он не будет выполняться ни для одной конкретной категории.

4 Пример теории в логике термов

Мы не будем подробно рассматривать аксиоматизацию логики термов, отметив лишь, что она задается в виде секвенций. Так как ценность логики определяется ее приложениями, дадим набросок того, как построить на базе логики термов дедуктивную теорию примитивно-рекурсивной арифметики.

Язык ее состоит из:

• счетного множества переменных x_1, \ldots, x_i, \ldots сорта N;

- нульместного функционального символа 0:N;
- одноместного функционального символа $S: N \to N;$
- функциональных символов $pr_n^i: N \times \ldots_n \times N \to N$ для каждого n>0 и $0< i \le n.$

В качестве знака секвенции будем использовать \Vdash . К числу основных секвенций добавляем:

- $1) \Vdash 0$
- $2) x \Vdash S(x)$
- 3) счетное множество секвенций вида $x_i \Vdash pr_k^i(x_1,\ldots,x_k)$ для каждого k>0 и $0< i \le k$
- 4) схему секвенций $G_1(x_1,\ldots,x_k),\ldots,G_m(x_1,\ldots,x_k) \vdash F(G_1(x_1,\ldots,x_k),\ldots,G_m(x_1,\ldots,x_k))$, где вместо G_1,\ldots,G_m,F могут стоять любые функциональные символы языка местности $k\geq 0$ и $m\geq 1$.

Также мы добавляем правило расширения языка новыми функциональными символами.

Если в языке уже имеется k-местный функциональный символ g, то мы можем вол f и k+2-местный функциональный символ g, то мы можем добавить в язык новый k+1-местный функциональный символ h, правила оперирования которым задаются двумя новыми основными секвенциями:

5)
$$f(x_1,...,x_k) \Vdash h(x_1,...,x_k,0)$$

6)
$$g(x_1, \ldots, x_k, y, h(x_1, \ldots, x_k, y)) \Vdash h(x_1, \ldots, x_k, S(y))$$

Чтобы семантически обосновать построенную теорию, мы должны показать, как на основании значений арифметических термов, стоящих слева от знака секвенции, вычислить значение терма, стоящего справа.

• Обоснованием аксиомы $\Vdash 0$ является константная функция **0**.

- Обоснованием аксиомы $x \Vdash S(x)$ является функция следования за **S** (прибавления единички, добавления к кучке камешков еще одного, рисования палочки на песке).
- Обоснованием аксиом вида $x_i \vdash pr_k^i(x_1, ..., x_k)$ является тождественная функция $\mathbf{Id}(\mathbf{x}) = \mathbf{x}$.
- Обоснованием схемы аксиом $G_1(x_1, ..., x_k), ..., G_m(x_1, ..., x_k) \Vdash F(G_1(x_1, ..., x_k), ..., G_m(x_1, ..., x_k))$ является само определение следования в логике термов.
- Обоснованием двух аксиом, соответствующих правилу введения новых функциональных символов, также является тождественная функция $\mathbf{Id}(\mathbf{x}) = \mathbf{x}$.

В итоге для семантического обоснования построенной теории нам понадобилась лишь константная функция **0**, функция следования за **S** и тождественная функция **Id**. Примитивнорекурсивная арифметика на базе логики термов предстает не как теория свойств множества натуральных чисел, а как теория счета. Идеальный объект под названием «множество натуральных чисел» в ней отсутствует, он просто не нужен, как ненужным оказалось и понятие истины.

Заключение

Может сложиться впечатление, что целью автора было убедить читателя в том, что вся современная логика неправильна, а правильным является его подход. Это неверно. Действительной целью было показать, что природа логики гораздо более глубинна, чем принято считать. Она проявляется уже на уровне теории знаков, а не на уровне позднейших наслоений в виде теории истины и пр. На уровне теории знаков логика еще свободна от обременительных предпосылок, принимаемых в связи с теми или иными философскими взглядами на природу бытия. Любые философские теории являются отражением успехов в познании природы для конкретного периода истории. Логика не должна быть к ним привязанной. Лишь тогда ее действительно можно будет назвать органоном. В этом и заключается ответ на постав-

ленный в эпиграфе вопрос, что же представляет собой Логика как таковая?

Литература

[1] *Бочаров В.А., Маркин В.И.* Основы логики. Учебник. М.: Космополис, 1994. С. 9–10.