
257 

Paul Weingartner 

ON THE COGNITION OF LAWS OF NATURE 

In this paper I shall discuss the problem of cognition of laws of 
nature on the following different levels of understanding:  

(i) First level of understanding of laws of nature: the Greek Ideal 
of Science 

(ii) Second level: Space Time Invariance 
(iii) Third level: Dynamical Laws 
(iv) Fourth level: Statistical Laws 
(v) Fifth level: Laws and Causality 
(vi) Sixth level: Chaotic Motion 
(vii) Seventh level: Initial conditions and Constants of Nature  
Before I shall begin with the first level of cognition or understand-

ing a short clarification of different meanings of the expression ‘law of 
nature’ will be given:  

L1 the “law” as it “is” in the thought of the inventor or discoverer 
L2 The “law” as it “is” in the things which are ordered or described 

by it 
L3 The “law” as a law statement formulated in some scientific 

language 
L4 The “law” as an ideal true law, w.r.t. which laws known at pre-

sent in the sense of L3 are approximations 
L5 The “law” as ideal conceptual entity more or less independent 

and separated from law statements.  
L3 is preferable to L1, since what an author like Newton thought 

(for example about his law of gravitation) is open to speculations, even 
if historians of science may find out something about it; but then also 
from written documents. The existence of L2 expresses a modest real-
ism: What corresponds to a true law of nature is a structure of things 
(natural objects) with their properties and relations among them (with-
out assuming a naive picture theory). Observe however that there are 
important differences between L2 and L3: Law statements are true or 
false, can be tested, confirmed, refuted, they can be nearer to the truth 
than other law statements, they can contain negations… etc. Nothing of 
these features can hold for structures of real objects. Concerning L4 one 
may say that a law statement L3 is usually an approximation to the true 
law L4 in Popper’s sense: a law L is a better approximation to L4 than 
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another law L’ iff L has more true relevant and informative con-
sequences and less false ones than L’.1 Sense L5 of law comes close to 
Bolzano’s and Frege’s view about laws of logic and mathematics and 
Popper’s interpretation of them by abstracting from the knowing sub-
ject and with the help of his theory of the 3rd world. It seems, however, 
that L5 is more suitable for laws of logic and mathematics than for laws 
of nature. In conclusion I want to say that the expression ‘law of 
nature’ is used in this essay – if not otherwise indicated – in the sense 
of L3. 

Laws in the sense of L3 can still be used in different ways: as laws 
about natural objects or systems (for example physical systems) and as 
(meta)laws about laws. Especially the second type can be used in a 
descriptive or normative way. Thus the principle of Special Relativity 
can be expressed first as a law about physical systems or physical ref-
erence frames: all inertial systems are equivalent; secondly as a meta-
law about laws: all laws of nature are invariant under changes (trans-
formations) of inertial reference frames; thirdly as a methodological 
norm about laws: all laws of nature should be invariant under changes 
of inertial reference frames. 

First Level: the Greek Ideal of Science 
In order to be able to describe and explain movement we need to 

distinguish something which changes relative to something which does 
not change. This important distinction is pointed out by Aristotle2 also 
as a criticism of Parmenides’ theory of the universe which assumes 
only one being and nothing else.3 That what changes, moves was 
thought to be contingent (not necessary) in respect to the not changing 
(or even not changeable) necessary principle or law. In general this idea 
belongs to the Greek Ideal of Science which was more or less manifest 
in several Greek thinkers from Thales on but was elaborated in detail 
by Plato and Aristotle: 

To describe and explain the visible (observable), concrete, par-
ticular, changing, material contingent world by non-visible (non-
observable) abstract, universal, non changing immaterial and necessary 
principles. 

This first level of cognition of laws of nature which is manifest in 
the Greek Ideal of Science teaches us that our understanding of any 

                                                      
1  That this concept of approximation to truth (Verisimilitude) can be made precise (and 

freed from the objections by Tychy and Miller) was shown in Schurz-Weingartner 
(1987) and Weingartner (2000) ch. 9. 

2  Aristotle (Phys) 190a17f. 
3  Aristotle (Met) 986b15f. and (Phys) 186a24f. 
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kind of genuine law is such that a law is something which does not 
change, i.e. is invariant (symmetric) relative to something else which 
changes: 

“In fact it may be argued that laws of nature could not have been 
recognized if they did not satisfy some elementary invariance principles 
– such as translation in Euclidean space and translation in time – if they 
changed from place to place, or if they were also different at different 
times”4. 

“Physicists as a rule hold that physical laws are eternal… It is 
indeed difficult to think otherwise, since what we call the laws of 
physics are the results of our search for invariants. Thus even if a sup-
posed law of physics should turn out to be variable, so that (say) one of 
the apparently fundamental physical constants should turn out to 
change in time, we should try to replace it by a new invariant law that 
specifies the rate of change”5. 

As it will be clear from the above considerations and from the two 
quotations a first level of understanding of a genuine law is that it 
expresses an invariance. 

Second Level: Space Time Invariance 
Whereas the first level of understanding a law is concerned with 

invariance in general the second level of understanding is concerned 
with finding out a specific kind of invariance. Among these the oldest 
and most famous one is the invariance w.r.t. space and time. Or in other 
words: the invariance under changes of place and time. 

“The paradigm for symmetries of nature is of course the group of 
symmetries of space and time. These are symmetries that tell you that 
the laws of nature don’t care about how you orient your laboratory, or 
where you locate your laboratory, or how you set your clocks or how 
fast your laboratory is moving”6. 

In this quotation Weinberg describes roughly the four important 
kinds of space time invariance or invariance w.r.t. continuous change of 
space time. These four kinds can be described in more detail as follows: 
The first three are not concerned with real (permanent) movement but 
only with changing place, orientation and delay of time. The last is 
more complicated and we have to split it also into three different types. 
(i) Location of Laboratory: Laws are invariant w.r.t. the place of 

the laboratory. This is called translation symmetry (invariance) in 
space. It yields three conservation laws of momentum. And since 
                                                      

4  Wigner (1967) p. 43 
5  Popper-Eccles (1981) p. 14 
6  Weinberg (1987) p. 73 
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every new invariance (symmetry) implies a new unobservable, what 
becomes unobservable here is absolute place. That means that the 
laws of nature do not designate a certain place. They abstract from 
hic (here) and nunc (now) as Thomas Aquinas pointed out already7. 

(ii) Orientation of laboratory: Laws are invariant w.r.t. the orienta-
tion of the laboratory. This is called rotation symmetry in space. 
Observe however that the laboratory is not rotating it is just reori-
entated (turned on an angle). This yields three conservation laws of 
angular momentum. Unobservable: absolute direction. 

(iii) Clock setting in laboratory: Laws are invariant w.r.t. to time 
delay; i.e. it does not matter how you set your clocks in the labora-
tory. This yields the conservation law of energy. Unobservable: 
absolute point of time. Concerning the movement of the laboratory 
(you may always insert ‘reference frame’ instead of ‘laboratory’) 
three different kinds have to be distinguished:  

(iv) Inertial movement I: Inertial movement is force free movement 
of particles (mass points) with uniform velocity along straight lines. 
For inertial movement I there are three further assumptions: (i) a 
uniform time scale (or equal time measurement) everywhere (ii) 
Euclidean Space (iii) with velocity much smaller than the velocity 
of light. The invariance defined by (1)-(4) is called Galilean 
Invariance. All laws of Classical Mechanics are Galilei invariant 
(or: invariant under Galilei transformations). But Maxwell’s laws 
are not. 

(v) Inertial movement II: for inertial movement II there is only the 
assumption that v = c, i.e. that the velocity v is smaller than or 
equal to the light velocity c. Observe however that conditions (i) 
and (ii) are dropped. That means that (i) it is permitted that the time 
measurement may be different w.r.t. to inertial reference frames 
(laboratories) which move with different velocity; and (ii) that 
Euclidean space is replaced by Minkowski space. The invariance 
defined by (1)-(3) and (5) is called Lorentz Invariance or invariance 
of Special Relativity. Maxwell’s laws are Lorentz invariant. The 
laws of Classical Mechanics are not, but they can be revised by 
Einstein’s (and Lorentz’s) corrections in order to become Lorentz 
invariant. The great idea of Einstein (1905) w.r.t. understanding of 
what genuine laws of nature are was this: One can keep all laws of 
Classical Mechanics and of Maxwell’s Theory invariant under 
inertial transformations II (i.e. without taking into account gravita-
tion or strong forces) by giving up assumptions (i)-(iii) of (4) and 
assuming the constancy of light velocity (that the propagation of 

                                                      
7  Cf. (STh) I, 46,2. 
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light with velocity c is independent of the movement of the source). 
A consequence is then that the magnitudes m, l, and t are not 
invariant under movement II, - i.e. if v comes close to c – and have 
to be corrected by the factor defined in the Lorentz transformation. 
This idea was however not just a mathematical advice for refor-
mulation, because the consequences (the respective changes of the 
magnitudes: growing mass, length contraction, time dilatation) 
could be confirmed by experiment. 

(vi) Arbitrary movement or arbitrary space time transformations. 
This kind of invariance of laws under arbitrary space time trans-
formations is the invariance of general Relativity. It is the most 
general invariance of laws of nature we know today. In order to 
understand it more accurately, we have to notice that it transcends 
Lorentz Invariance in a threefold way: (i) first in the sense that it 
drops the restriction to inertial reference frames, (ii) secondly in the 
sense that it drops the restriction to straight Galilean coordinates, 
and (iii) third in the sense that it extends to gravitation. 

Laws of nature which are invariant in that sense are Einstein’s 
field equations. 

Third Level: Dynamical Laws 
From the time of Newton on one had a better and better under-

standing of one important type of law: the dynamical law. This under-
standing was connected with conditions satisfied by those physical 
systems the behaviour of which was successfully described by these 
dynamical laws; i.e. in such a way that the laws were confirmed by the 
application:  

D1 the state of the physical system S at any given time ti is a defi-
nite function of its state at an earlier time ti-1. A unique earlier state 
(corresponding to a unique solution of the differential equation) leads 
under the time evolution to a unique final state (again corresponding to 
an unique solution of the equation). 

D2 condition D1 is also satisfied for every part of the physical 
system, especially for every individual body (object) as part of the 
system even if the individual objects may differ in the classical or in the 
quantum mechanical sense. 

D3 the physical system S is periodic, that is the state of S repeats 
itself after a finite period of time and continues to do so in the absence 
of external disturbing forces. 

D4 the physical system S has a certain type of stability which obeys 
the following condition: Very small changes in the initial states, say 
within a neighbourhood distance of ε lead to proportionally small (no 
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more than in accordance of linearly increasing function of time) 
changes h(ε) in the final state. This kind of stability which survives 
small perturbations and leads to relaxation afterwards is called pertur-
bative stability and holds in many linear systems8. 

D1 is the main condition for dynamical laws although D3 and D4 
were underestimated and D4 was only understood more deeply after the 
discovery of chaotic motion (see Sixth Level). D1 is manifest in 
Laplace’s view that the dynamical laws are the laws governing our 
universe: “We ought to regard the present state of the universe as the 
effect of its anterior state and as the cause of the one which is to fol-
low”9. In this sense Laplace thought that all the states of the universe 
could be calculated i.e. predicted and retrodicted from one single state 
with the help of the (dynamical) laws. Along this line of reasoning D1 
is usually taken as the defining condition for determinism; where 
determinism is thought to imply predictability and conservation of 
information. But this is not correct because D1 does not guarantee pre-
dictability or conservation of information if D4 is not satisfied (see 
below). 

D2 states that the dynamical law describes also the time develop-
ment of the individual particle or object as a part of the time develop-
ment of the whole physical system. This presupposes a concept of 
‘individual object’ which is re-identifiable through time as understood 
in Classical Mechanics. Such kinds of objects are not available in this 
straightforward way (but only with special constraints) in Quantum 
Mechanics. 

D3 is not a necessary condition for the application of dynamical 
laws obeying D1 and D2 though D3 is satisfied in most cases where 
dynamical laws are applied. The main point is that according to D3 
there is recurrence of the state of the physical system after some finite 
period of time. 

Are there important cases of physical system which satisfy D1 but 
not D3? The answer to this question is Yes. The systems in question are 
systems which show chaotic behaviour (or systems in chaotic motion). 
Chaotic behaviour is non-periodic. And this holds also without any 
external disturbance. A consequence of that is a further characteristic of 
chaotic motion: The Poincaré map shows space-filling points. This is a 
method introduced by Poincaré about 100 years ago which considers 
the points in which the trajectory cuts a certain plane. If the motion is 
chaotic there will be no immediate recurrence that is the plane will 
always be cut at new points and as time goes on will be filled with 

                                                      
8  Cf. the discussion of the conditions D1,D3 and D4 in Holt-Holt (1993). 
9  Laplace (1814) ch. 2 
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points. But if the phase space is small – chaotic motion is bounded 
motion – there will be recurrance of the trajectory after some finite 
period of time. 

D4 was a hidden assumption of Classical Mechanics (CM) until the 
end of the 20th century. In other words the laws of CM were understood 
in such a way that D4 is always satisfied. The neglect is expressed by 
Lighthill as follows: 

“Here I have to pause, and to speak once again on behalf of the 
broad global fraternity of practitioners of mechanics. We are all deeply 
conscious today that the enthusiasm of our forebears for the marvellous 
achievements of Newtonian mechanics led them to make generaliza-
tions in this area of predictability which, indeed, we may have gener-
ally tended to believe before 1960, but which we now recognize were 
false. We collectively wish to apologize for having misled the general 
educated public by spreading ideas about the determinism of systems 
satisfying Newton’s laws of motion that, after 1960 were to be proved 
incorrect”10. On the other hand, that there are cases which violate D4, 
i.e. cases where small initial deviations lead to un-proportional (expo-
nentionally increasing) effects was known by experienced people from 
antiquity (see below, level 6: chaotic motion).  

Fourth Level: Statistical Laws 
After the discovery of statistical laws in thermodynamics and later 

in other areas there was a general doubt with respect to the mechanistic 
and deterministic interpretation of the world with the help of dynamical 
laws. That there are physical truths which are statistical in character 
was clear for Boltzmann and Poincaré who both underline the impor-
tance of Maxwell’s, Clausius’, Gibbs’ and Carnot’s discoveries11. 

The question was now: Could it not be the case that all laws are 
statistical and the deterministic outlook is only on the surface of mac-
roscopic phenomena? That is all complex systems of the world are in 
fact, in its inmost structure, i.e. on the atomic level, like gases or 
swarms of mosquitos or clouds. And how can a law then emerge from 
such a random behaviour of milliards of gas molecules? Schrödinger 
gave the following answer in his inaugural lecture in Zürich (1922):  

“In a very large number of cases of totally different types, we have 
now succeeded in explaining the observed regularity as completely due 
to the tremendously large number of molecular processes that are co-
operating. The individual process may, or may not, have its own strict 
regularity. In the observed regularity of the mass phenomenon the indi-

                                                      
10  Lighthill (1986) p. 38. 
11  Cf. Boltzmann (1896) p 567 and Poincaré (1958) p. 97 
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vidual regularity (if any) need not be considered as a factor. On the 
contrary, it is completely effaced by averaging millions of single proc-
esses, the average values being the only things that are observable to us. 
The average values manifest their own purely statistical regularity…”12. 

The main points in which statistical laws differ from dynamical 
laws can be expressed by the following four conditions S1-S4 which 
refer to D1-D4 respectively: 
S1  the state of the physical system at ti is not a definite function of an 

earlier state at ti-1 . The  same initial state may lead to different suc-
cessor states (branching); 

S2  statistical laws describe and predict the states of the whole physical 
system but they do not describe or predict the individual parts 
(objects) of this system;  

S3 statistical laws describe only physical systems which are non-peri-
odic, i.e. systems with extremely un-probable recurrence of the 
whole state of the system; 

S4  the loss of information (and consequently the difficulty of predic-
tion) about the state of an individual object (or a small part) of the 
whole system increases exponentially with the complexity of the 
system. On the other hand: the (accuracy of the) information about 
the average values of magnitudes (parameters) of the state of an 
individual object (or small part) increases also with the complexity 
of the system. 

There were two main questions concerning both types of laws: 
(vii) Is one type of law reducible to the other?  
(viii) Are statistical laws compatible with dynamical laws? 

4.1 Statistical Laws are not reducible to dynamical laws 
The answer to the first question is certainly: No. This can be shown 

from a comparison of the conditions D1-D4 to S1-S4. 
a. It is easy to see that there is an essential difference between the 

conditions D1 and S1. Like D1 is necessary for dynamical laws, S1 
is necessary for statistical laws. This presupposes however that we 
interpret S1 (and by it statistical laws) realistically. That is we 
assume there is real branching in reality. An epistemic (or idealis-
tic) interpretation according to which branching is only a sign for 
our lack of knowledge whereas in the underlying reality everything 
is determined (by hidden parameters and dynamical laws of which 
we are ignorant) we do not find justified. This can be substantiated 
                                                      

12 Schrödinger (1961) p. 11. Schrödinger’s lecture which had the title „Was ist ein 
Naturgesetz“ was later published  in the book “Was ist ein Naturgesetz?” which is a 
collection of essays by Schrödinger. 
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by the fact that the following types of processes do not satisfy D1 
(but satisfy S1) as is evident by all the sophisticated knowledge we 
possess today about these processes: Thermodynamical processes, 
processes of friction, of diffusion, of radiation, of electric transport, 
processes of Quantum Mechanics, processes of biology, of cosmol-
ogy and of psychology13. 

b. Similarly D2 and S2 differ in an important point. Statistical laws 
are bound to huge ensembles they describe physical systems con-
sisting of a huge number of objects. The greater the number of 
objects the more strict is the law about the whole ensemble. Though 
there is indeterminacy for every individual system, there is a strict 
law for the whole system if the ensemble is large enough. To some 
extent such laws “emerge” from the “lawless” behaviour of a large 
number of individual systems. In this sense Wheeler spoke of “law 
without law”14. This description fits very well to the statistical laws 
in Thermodynamics. Concerning the statistical laws in QM there is 
an additional problem: though it is clear also here that the theory 
refers to big ensembles of prepared systems the question is whether 
this is the only reference; i.e. whether it also refers to individual 
quantum systems like singular photons or electrons. This question 
arises especially in connection with series of new experiments15. 
Despite of this complication in QM, it holds for all important sta-

tistical laws that the individual system is not definitely described by the 
law but has its degrees of freedom which are not restricted by the law. 
This shows unambiguously the difference between D2 and S2. And it 
shows again that w.r.t. D2 and S2 neither type of law is reducible to the 
other. 
(iii)  The difference between dynamical and statistical laws which is 

usually viewed as the striking difference is that which is expressed 
in D3 and S3: Dynamical laws are invariant under time-reversal, 
statistical laws are not. The former describe processes which are 
time (reversal) symmetric, the latter describe processes which are 
irreversible; 

But this difference has been weakened within the last years to a 
considerable extent. First indirect violations of time-reversibility 
have been found, recently also direct ones. Concerning the indirect 
violations it is known already since decades that CP (charge-parity) 
                                                      

13  This is however not the place to enter a discussion about the ontological status of 
statistical laws. 

14  Wheeler (1980) p. 363. Cf. The quotation of Schrödinger above. 
15  These are mainly so-called Split-beam experiments with photons and other particles 

and experiments which hold particles in a „cave“. For the emergence of statistical 
laws in QM see Mittelstaedt (1997). 
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is violated in weak interaction with neutral K-mesons. Since CPT 
(the combined symmetry of charge parity and time) – one of the 
most important symmetries of Quantum Field Theory – seem to be 
universally satisfied T has to outbalance the difference and there-
fore T-reversibility cannot hold unrestrictedly. Concerning the 
direct violation there have been two different series of experiments 
independently made in CERN and FERMILAB which proof the 
violation: The time dependent rates for the strangeness-oscillation 
process from K0 to⎯K0 and its inverse from ⎯K0  to K0 (neutral 
kaons) are different (CERN)16. If time-reversal symmetry were 
strictly preserved we should have identical rates. Since T, unlike P, 
reverses also the spin of the particle an angular variable φ was 
measured for each decay. Time reversal symmetry would require 
that the φ (and sin 2 φ) distributions are symmetrical about zero. 
The observed asymmetry is about 14 % which agrees with the theo-
retical expectation (FERMILAB)17. 

Concerning D4 and S4 it holds that there is a considerable dif-
ference if D4 is satisfied. Then the system governed by dynamical 
laws relaxes if it is disturbed in a modest way.  In this case the pre-
dictability also of singular parts of the system (singular objects) 
does not decrease. If however D4 is not or only partially satisfied 
then we have (stronger or weaker) chaotic motion. In this case there 
is no predictability – although the system is governed by dynamical 
laws – and loss of information about the diverging parts of the 
system according to the Kolmogorov entropy (see level six below). 
In this case there is a certain similarity to S4 w.r.t. the individual 
objects or small parts of the system: in both cases there is an expo-
nentially growing loss of information about the individual parts of 
the system. But this similarity should not mislead: In the disturbed 
case of a dynamical system its chaotic behaviour does not even 
satisfy statistical laws18, or satisfies only partially statistical laws in 
the following sense: In some cases one can take into account 
ensembles of trajectories instead of single trajectories; since single 
trajectories which differ very little w.r.t. their initial conditions 
(their starts) diverge exponentially in the course of time. Whether 
such a description is possible depends on the degree of how chaotic 
a motion is19.  

                                                      
16  Angelopoulos et al. (1998). 
17  Cf. Schwarzschild (1999) 
18 An example is the chaotic pendulum. For a description see Lighthill (1986). 
19  Chirikov (1991) 
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4.2 Statistical laws are compatible with dynamical laws 
(i) Concerning D1 and S1 both are easily compatible w.r.t. to huge 

ensembles of individual objects. In this case also the statistical law 
can make definite statements about the future state. The individual 
state however is not determined by the earlier state in processes of 
thermodynamics, radiation, friction etc. (provided we accept a 
realistic interpretation of statistical laws, i.e. assuming real degrees 
of freedom of the individual object in such phenomena).  

(ii) Zermelo thought that he had proved that dynamical laws and 
statistical laws (like Boltzmann’s law of entropy) are incompatible. 
He used Poincaré’s recurrence theorem to show that Boltzmann’s 
statistical mechanics cannot be correct20. However, as the replies of 
Boltmann show21 Zermelo partially neglected and partially 
misunderstood important conditions in connection of Poincaré’s 
recurrence theorem. Zermelo did not realize under which physical 
conditions this theorem is not applicable and that the recurrence 
depends very much on the complexity of the system; such that with 
increasing complexity the probability of the recurrence of the state 
of the system becomes extremely low22. 

(iii) At the time of Zermelo there was of course a strong belief that 
dynamical laws describe processes which are time-reversible. As it 
was said in 4.1(iii) time reversal symmetry does not strictly hold on 
the micro level. On the other hand Boltzmann was always very 
modest concerning claims of “irreversibility”. Although he used 
this term he immediately added that it means that the probability of 
the recurrence of the whole system is very low and decreases expo-
nentially with the complexity of the system. Taken in this interpre-
tation there is no incompatability. 

(iv) The compatibility of dynamical and statistical laws even within 
one physical system is illustrated in a lucid way by a Gedankenex-
periment of Lee23:  

                                                      
20  Zermelo (1896a,b) 
21  Boltzmann (1896) and (1897). 
22  Zermelo was at that time assistant to Max Planck who didn’t go so far in his views 

as his assistant. For that see a letter from Planck to Graetz, cited in Kuhn (1978) p. 
27. Cf. also Weingartner (1999) After Boltzmann’s criticism of Zermelo’s alleged 
proof, Zermelo left physics and worked on the foundations of mathematics (Set 
theory) where he became very successful. However, he still behaved stubborn w.r.t. 
to new discoveries or proofs. In October 1931 he wrote to a friend that Gödel’s 
proof (of the incompleteness and undecidability of arithmetic) is nonsense. See the 
letter published in Weingartner-Schmetterer (1987) p. 45 f. 

23  Lee (1988) p. 16 f. 
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Assume a number of airports with flight connections in such a way 
that between any two of these airports the number of flights going 
both ways along any route is the same. This property will stand for 
microscopic reversibility. Some of the airports may have more than 
one air connection (they are connected with more than one other 
airport) whereas other airports have a connection only to one airport 
(let’s call such airports dead end airports). A passenger starting 
from a dead end airport (or starting from any other airport) can 
reach any other airport and can also get back to his starting airport 
with the same ease. This property stands for macroscopic reversi-
bility. In this case we have both mircroscopic and macroscopic 
reversibility. 

But suppose now we were to remove in every airport all the 
signs and flight informations, while maintaining exactly the same 
number of flights. A passenger starting from a dead end airport A 
will certainly reach the next airport B since that is the only airport 
connected with A. But then  especially when assuming that B has 
many flight connections – it will be very difficult to get further to 
his final destination, in fact it will be a matter of chance. Moreover 
his chance to find back to his dead end airport A will be very small 
indeed. Thus in this case we have microscopic reversibility main-
tained but macroscopic irreversibility or very improbable recur-
rence – especially if we think of millions of passengers flying 
around randomly - and both are not in conflict. 

Fifth Level: Laws and Causality 
One level or kind of understanding of laws of nature which has 

been of great importance in the whole history of philosophy and of sci-
ence is connected with causality. And after the more accurate interpre-
tation of dynamical law with the help of differential equations (from 
Newton’s time on) this type of causal relation got a very definite inter-
pretation: In the time development of a physical system its state S1 
(which corresponds to a solution of the differential equation) is the 
cause of its later state S2 (which corresponds again to a solution of the 
equation) where the causal relation between cause S1 and effect S2 is 
represented by the law of nature formulated by the differential equa-
tion. This was an exact interpretation of one type of cause of the four 
traditional causes described by Aristotle in his metaphysics24. The 
corresponding understanding of laws of nature was such that every law 

                                                      
24  Aristotle (Met) book V, ch. 2. This type of cause fits probably best to the so called 

causa efficiens. 
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of nature represents a causal relation or describes a causal connection 
which is such that the following conditions are satisfied: 
(i) It satisfies D1 and D2, i.e. the causal relation takes place not 

only between the earlier and later states of the system but also 
between all its sub-systems, ultimately between the individual 
objects or particles. This condition, i.e. a causal relation according 
to D1 and D2 is often expressed in the following way: 

CD The same initial state leads – under the same conditions – to 
the same series of successor states. 

(ii) Every causal relation represented by laws of nature and 
describing causal processes is spacio temporal continuous. 

(iii) It satisfies D4, i.e. it presupposes physical systems with a high 
degree of stability such that perturbations will not destroy definite 
predictability of the effects.  
Processes like those of thermodynamics didn’t satisfy (i), those of 

Quantum Mechanics (QM) didn’t satisfy (ii) and those of chaotic 
motion didn’t satisfy (iii). Therefore the natural question was whether 
such processes are causal.  

The first question is whether there is some kind of causality repre-
sented by statistical laws. Such a kind of causality cannot satisfy D1 
and D2. Also condition (ii) should not be a necessary condition for such 
a kind of causality. A causal relation for statistical laws which is in 
accordance with S1-S4 was proposed by March:25  

CS  The same initial state may lead to different successor states. But 
those successor states which belong to the same initial state obey the 
same statistics. 

The second question is whether there is some kind of causality 
which can be accepted in quantum mechanical processes. As is known 
Heisenberg thought that the uncertainty relations prove that there can-
not be “Since all experiments have to obey the equation ∆p⋅ ∆q ≥ h viz. 
∆W⋅ ∆t ≥ h QM establishes finally the invalidity of the causal law”26. 
Concerning this second question one should not forget first that D1 plus 
D4 are valid not only for objects which can be treated classically 
(described by Hamilton equations) but also for those QM-objects to 
which definite properties can be attributed by the Schrödinger equation. 
Secondly one should notice that the constraints of the uncertainty 
relations do not forbid every causal relation but only those which pre-
suppose a principle (FS) which was indeed a hidden assumption in 
classical physics and also in the philosophical tradition: 

                                                      
25  March (1957) p. 14 
26  Heisenberg (1927) p. 197 
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FS Any two quantities (out) of all observables can be measured 
instantaneously to a suitable degree of exactness; or more accu-
rately in such a way that the values of measuring are free of disper-
sion and determined by hidden parameters which are themselves 
not observable. 
The principle FS is not satisfied in QM. However, QM is not the 

only area where this or analogous principles are not satisfied. There is a 
more general principle which belongs to the formation rules underlying 
classical logic. It says that every proposition can be combined with any 
other one to form a new proposition and every predicate can be 
combined with any other one to form a new (complex) predicate. One 
can easily see that these principles have to be taken with care when 
logic (presupposing them) is applied to certain fields: Since p, q…etc. 
are variables they can be instantiated by any statement about empirical 
events. Thus if p represents the occurrence of human action h1 and q 
represents the occurrence of human action  

h2 then it is not always the case that p∧ q represents also a complex 
action h3. Thus the events described cannot be combined like the 
describing propositions. The following example form zoology is con-
cerned with incompatible predicates: Sexual excitement and fear cannot 
be observed (or measured) at the same time in male animals but it can 
in female animals while sexual excitement and aggression cannot be 
observed a the same time in female ones but in male animals. These 
examples show that the invalidity of such or similar principles like FS 
is not a speciality of QM but is rather general and is distributed among 
different fields of reality which are investigated by scientific research. 
The conclusion of all that is simply that any concept of causality which 
implies (or presupposes as a necessary condition) the principle FS is 
not suitable for QM and also not for other areas of natural science. 

The third question is whether there is some kind of causality which 
can be accepted in processes of chaotic motion. To this one may answer 
that in the case of dynamical (or deterministic) chaos the underlying 
laws are dynamical laws and therefore nothing hinders to apply here a 
concept of causality which is that of dynamical laws i.e. satisfies D1, 
D2, (i) and (ii) though does not satisfy D4. That it does not satisfy D4 
means that causality should not be confused with predictability. Thus 
though D1 and D2 are satisfied (i.e. there are dynamical or 
deterministic laws) chaotic motion is not predicable except for 
extremely short time intervals. 
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Sixth Level: Chaotic Motion 
The discovery of chaotic motion showed something new which was 

not understood in connection with laws of nature so far. It showed that 
initial conditions, boundary conditions or mathematical proportions are 
not necessarily accidental but can play an important role w.r.t. several 
properties of the laws. The new discovery was that even within the area 
of relatively simple physical systems which perfectly obey dynamical 
laws of Classical Mechanics, like the spherical pendulum, such systems 
can change radically its behaviour. Thus a dynamical system obeying 
Newton’s laws with strict predictability can become chaotic in its 
behaviour and practically unpredictable just by changing slightly some 
initial conditions. Experiments which prove such a behaviour of 
dynamical systems have been made since the seventies. A special kind 
of very simple arrangements are experiments with the so-called forced 
pendulum or with the kicked rotator. Such systems satisfy normally 
conditions D1 to D4 (cf. chapter 3 above). But a small change in the 
initial conditions force the system to violate D3 and D4. Concerning 
the spherical pendulum the important new discovery is now that this 
simple physical system becomes chaotic if the top end is forced to 
move back and fort (maximal displacement ∆) with a slightly different 
period T greater than T0, provided that ∆ is about 1/64 of l and not more 
than about a tenth of the energy of motion is dissipated by damping (air 
resistance etc.). Miles (1984) showed experimentally that the system is 
chaotic for values of T = 1,00234T0. It has to be emphasized however 
that this does not just mean that the system becomes unstable in the 
sense of simple bifurcation. In this case – and this was known for a 
long time – the pendulum will relax after a certain time. But for the 
values above the pendulum is breaking out of the plane, the bifurca-
tions are increasing the dependence on the initial conditions is com-
pletely random and there is no predictability. Nobody knows why this 
happens exactly at T = 1,00234T0 . And this shows that there is still a lot 
of ignorance concerning special values of initial conditions and in 
general concerning their role w.r.t. to the laws. The important necessary 
condition for chaotic behaviour is the sensitive dependence on the 
initial condition; or the fact that small changes in the initial states lead 
to exponentially increasing changes in the course of the time deve-
lopment. 

Historically it is interesting that already Aristotle had some 
understanding of such an exponential growth: 
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“…the least initial deviation from the truth is multiplied later a 
thousandfold”27. 

A modern interpretation of Aristotle’s observation of increasing 
error is given by the so-called Hénon-attractor28. The error increases 
exponentially with a factor at , where a ˜ 1,52 and t is a time unit. A 
deeper understanding is shown by Maxwell in the following quotation: 

“There is another maxim which must not be confounded with that 
quoted at the beginning of this article29, which asserts ‘That like causes 
produce like effects’. This is only true when small variations in the ini-
tial circumstances produce only small variations in the final state of the 
system. In a great many physical phenomena this condition is satisfied; 
but there are other cases in which a small initial variation may produce 
a very great change in the final state of the system, as when the dis-
placement of the “points” causes a railway train to run into another 
instead of keeping its proper course”30. The example of Maxwell shows 
that the sensitive dependence on initial conditions is not a defining 
condition (necessary and sufficient) for chaotic motion but only a nec-
essary, though very important one: The unproportional effect need not 
to be chaotic (as the running of the train into a different direction); 
however the crash may be partially a chaotic phenomenon. On the other 
hand Newton though considering weak perturbation didn’t pay much 
attention to such initial conditions as for example the distances of the 
planets and their mathematical proportions. In contradistinction Kepler 
was convinced that these proportions (which he calculated to be 
approximate to the golden cut) are necessary for the harmony (in 
today’s terms: stability) of the planetary system. This is not the place to 
go into details about chaotic motion. Elsewhere I have given eight nec-
essary conditions for dynamical chaos31. The new message however is, 
w.r.t. the question of understanding what a law (of nature) is, that initial 
conditions, boundary conditions and mathematical proportions are 
much more important than they seemed to be until the second half of 
the last century. 

Seventh Level: Initial Conditions and Constants of Nature 
The understanding of what a law is depends on the distinction 

between laws and initial conditions. This goes back to the Greeks (see 

                                                      
27  Aristotle (Heav) 271b8 
28  Hénon (1976) 
29  The one to which Maxwell refers is „The same causes will always produce the same 

effects“ which he discusses earlier. 
30  Maxwell (1992) p.13 
31  Weingartner (1996) p. 52 f. 
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first level of understanding). The deeper problems of such a distinction 
are very well described by the following quotations of Wigner and 
Wheeler: 

“The world is very complicated and it is clearly impossible for the 
human mind to understand it completely. Man has therefore devised an 
artifice which permits the complicated nature of the world to be blamed 
on something which is called accidental and thus permits him to 
abstract a domain in which simple laws can be found. The compli-
cations are called initial conditions; the domains of regularities, laws of 
nature. … The artificial nature of the division of information into “ini-
tial conditions” and “laws of nature” is perhaps most evident in the 
realm of cosmology. Equations of motion which purport to be able to 
predict the future of a universe form an arbitrary present state clearly 
cannot have an empirical basis. It is, in fact, impossible to adduce rea-
sons against the assumption that the laws of nature would be different 
even in small domains if the universe had a radically different structure. 
One cannot help agreeing to a certain degree with E.A. Milne, who 
reminds us that, according to Mach, the laws of nature are a con-
sequence of the contents of the universe. The remarkable fact is that 
this point of view could be so successfully disregarded and that the 
distinction between initial conditions and laws of nature has proved so 
fruitful32. 

The question what fixes the initial conditions was already discussed 
in the 13th century at this very university (Sorbonne, Paris) where I am 
giving my talk now: The question about which Thomas Aquinas and 
Bonaventura had a fight was that of the initial conditions of the 
universe. Can it be proved rigorously (i.e. in the sense of a 
demonstratio which is based on laws) that the world had a beginning 
(and has a finite age)? Bonaventura thought he can prove that by 
showing that so far not infinitely many states of the universe could 
have been past. Thomas Aquinas defended the view that this cannot be 
proved with the help of laws about this world (universe). And his 
argument was very simple: genuine laws abstract from hic (here, place) 
and nunc (now, point of time). Therefore we cannot derive any singu-
larity (initial condition) form a law33. This points to a certain 
incompleteness of all genuine laws and of all laws of nature. They do 
not fix certain initial conditions. Form this it follows that initial condi-
tions can be changed without changing laws. Thus our laws must be 
valid also in other possible universes which differ from ours only with 
respect to initial conditions. This way of thought was used by Popper to 

                                                      
32  Wigner (1967) p. 3. Milne (1948) p. 4. 
33  Cf. Thomas Aquinas (STh) I, 46,2. 
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define the kind of necessity which pertains to laws of nature, natural or 
physical necessity: “A statement may be said to be naturally or 
physically necessary iff it is deducible from a statement function which 
is satisfied in all worlds that differ from our world (if at all) only with 
respect initial conditions”34. But the question what kinds of initial 
conditions can change without changing the laws of nature is a very 
difficult one. It leads to the general question of the set of all those 
changes which do not change laws (of nature). This set Weinberg called 
the symmetry group of nature about which he wrote: 

“It is increasingly clear that the symmetry group of nature is the 
deepest thing that we understand about nature today…Specifying the 
symmetry group of nature may be all we need to say about the physical 
world beyond the principles of quantum mechanics”35. That the laws of 
nature are valid not just in our universe but also in others which differ 
from ours only w.r.t. some special initial conditions I have defended 
elsewhere36. There are two main reasons for that: (1) not all laws of 
nature are deterministic dynamical laws but some are statistical laws 
which allow branching and degrees of freedom for the individual parti-
cle. (2) It is impossible that all initial conditions (for example micro-
states) which are compatible with all the laws of nature occur as states 
(are played through) during the life time of our universe, provided this 
life time is finite. 

Concerning constants there is the difficult question whether the 
constants of nature are really constant. The important constants for non-
relativistic Quantum Mechanics (QM) are h (Plancks constant), me 
(mass of electron) and e (elementary charge). For relativistic QM the 
three main constants are h, c (light velocity) and G (gravitational con-
stant). In addition there are the dimenson-less constants  α (Fine struc-
ture constant)and the proportion of proton mass to electron mass 
(1836). If at least one of these constants would change the fundamental 
laws (in which they occur) would not be time(translation)invariant. 
Though there is intensive research done in order to be able to rigor-
ously test whether some of these constants change (slowly) with time, 
there is not a clear experimental evidence for it so far. Another question 
connected with this one is the explanation or the deeper reason for these 
magnitudes. With this question Dirac was concerned from 1937 on. In 
his last paper on that in 1973 he writes. 

“At present, we do not know why they should have the values they 
have, but still one feels that there must be some explanation for them 

                                                      
34  Popper (1959) p. 433. 
35  Weinberg (1987) p. 73 
36  Cf. Weingartner (1996) ch. 7.2 
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and when our science is developed sufficiently, we shall be able to cal-
culate them”37. There he formulates also his Large Numbers Hypothe-
sis. This hypothesis states that very large numbers cannot occur without 
reason in the basic laws of physics. 

“It involves the fundamental assumption that these enormous num-
bers are connected with each other. The assumption should be extended 
to assert that, whenever we have an enormous number turning up in 
nature, it should be connected to the epoch and should, therefore, vary 
as t varies. I will call this the Large Numbers hypothesis38. One of 
Dirac’s examples for an equation satisfying his Large Numbers 
Hypothesis was: e2/G ? me · mp = T/te (where the left part is the ratio of 
electric force and the gravitational force of electron and proton and the 
right part is the ratio of the age of the universe and the time the light 
needs for the diameter of the electron). Both magnitudes are dimenson-
less and of the order 1040. If this equation is true then the laws of nature 
are not time(translation)symmetric since G would decrease with time. 
Applied to the Big Bang Theory the Large Numbers Hypothesis implies 
continuous creation of matter which would violate the law of 
conservation of energy. However, there is not enough experimental 
evidence for a decision concerning these questions. But independently 
of that we may say that even if the laws of nature would change very 
slowly in accordance with very slow changes of the fundamental con-
stants due to the development of the universe such laws of nature would 
be invariant (symmetric) enough to both (i) justify the distinction 
between initial conditions and constants on one hand and laws on the 
other and (ii) explain contingent facts with the help of these laws. 
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